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In Logic Programming it is usual the employ of tree-like structures as a
way of representing programs and data (see [5]). We propose the use of a ring
as a framework for data structures of the Logic Programming. The elements
of our ring J,, introduced in [3], are called “p-tangles”. This concept is a
generalization of the concept of p-tree given in [1] and [2].

If p is a natural number greater than 1, we say that a pair of natural
numbers (n, o) is a p-path if 0 < n < p*. We denote by P, the set of p-paths,
ie.

P, ={(n,a) e NxN|0<n<p}.

Thus, if p = 2 we can represent graphically some 2-path as follows:

(0,0)

(0,1) (L1)

NN

0,2 (2,2) (1,2 (32

If (m,a) and (n, ) are elements of P, we call product of (m, ) and (n, ) (in
this order), to the pair (m+n-p*, a+ ). It is easy to see that if (m,«) € P,
and (n, 8) € P,, then (m +n-p*, a+ B) € P, and that P, together with this
operation is a monoid. In the sequel, if x and y are elements of P, we denote
the product of x aud y by zy, and we use the symbol 1 to denote the identity
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element (0,0). A property that we use in the sequel is the following: If (n, a)
is an element of P, and 3 € N is such that 0 < 3 < ¢, then there exists a
unique pair of elements of P,(x,v) and (y, 3) such that (z,v)(y, 8) = (n,a).

If (n,«) is an element of P,, we call module of (n,a) to the real number
1/p™ , and we denote it by [(n, &)|.

DEFINITION 1.1. We say that A is a p-tangle (or p-jungle) if A is a subset
of P,. In the sequel we denote by J, the set of all subsets of PP,.

A binary tree B can be represented by the 2-tangle which elements are the
p-paths associated to the leaves of B. By example,

(2,2) z{ (2i,i+1)|ieN}

Consider over J, the “symmetrical difference operation” A+ B = (A — B)U
(B — A) and the product

AxB={zeP, | card(4- B(z)) is odd },

where A - B(x) denotes the set {(a,b) € A x B | ab = z}.
(J,,+.%) is a non commutative ring with identity. As an example of the
meaning of the “*” operation we have that

*/\:

{LL,LR,R}*{L,R} ={LLL,LLR,LRL,LRR,RL, RR}
{(0,2),(2,2), (1, 1)} = {(0,1), (1,1)}= {(0,3), (4, 3), (2, 3), (6, 3), (1, 2), (3,2)}
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DEFINITION 1.2. If A € J,, we call norm of A, and we denote it by ||A]],

to:
1Al = 0 if A=0,
| max{|z| eRlz € A} if A#0.

If A,B,X,Y €], one has the following properties :
L A €R A 0<||A]| <1 and ||A|=0& A=0.

[Al=1«1€A and [AxB|=|Al|B].

(AZ£PANAsX = AxY)=> X =Y, and (A £ DAXxA=Y*xA)=> X =Y.
4+ Bl < max({|[All, | BI[})-

A is invertible if and only if || 4| = 1. In that case A7! = 32 (A+{1})*

> o w1

d:J,xJ, — R, (A,B)~ ||A+ B is an ultrametric over J,.

2. AN EXAMPLE

To illustrate the framework, let us suppose that it is required to unify the
expressions “f(X,¢(X))” and “f(h(Y),Z)”, i.e., it is required to find a more
general way to assign to the variables “X,Y,Z” some expressions such that
if we replace this assignation in “(X,¢(X))"” and “f(h(Y),Z)” we obtain the
same expression.

In order to find an answer for this question it is need to determine the
following set:

{(X,Y, Z) € Expressions® | f(X,9(X)) = f(R(Y),2)}.

Rewriting the equation f(X,¢(X)) = f(h(Y),Z) in a list form, it is ob-
tained:
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Now, it is possible to identify the atoms of the above list (“f”,“g”, “h”
and “0") with some elements of the (left) J,— module (J,)*:

f +~— (1,0,0,0)
g «— (0,1,0,0)
h — (0,0,1,0)
o «— (0,0,0,1)

So, the set Ezpressions is included in the J,-module (J;)%, and the above
equation can be written

{L}-f+{RL,RRLRL}-X +{RRLL}-g+{RRR,RRLRR}-0=
{L}-f+{RLL}-h+{RLRL}-Y +{RLRR,RRR} -0+ {RRL}- Z. -
Using the arithmetic representation of 2-paths, we have:
Therefore, the equation f(X, g(X)) = f(h(Y), Z) is equivalent to the linear
equation:
{(1,3)} - h+{(3,4)} - g +{(13,4),(27,5)} - O

Now, looking for a fundamental system of solution of the homogeneous equa-
tion

{(1’2)v (11’5)} X+ {(5’4)} Y+ {(37 3)} - Z =0,

it is obtained that

{(1,2),(11,5)} - X + {(5,4)} - Y + {(3,3)} - Z =0

=4
X {(1,2)}
We@| Y | = @ |- (w).
Z {(5,4)}

In order to find a particular solution of equation (I), one can suppose that the
list X,Y, Z has the form:
X=X - h+X,-9g+Xo-0O;
Y=Y,-h+Y,-g+Yg-0O;
Z=Zy-h=+Z,-g+7Zg-0O
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where X, X,, X0, Vs, Yy, Yo, Z), Z,, y Z5 are elements of J,. As {h,g,00}
is a free set of the module (J)*, the equation (I) is equivalent to the system:

1L,5)} - X, +{(5,4)} - Y, +{(3,3)} - Z, {(3,4)}
{(1,2),(11,5)} - X+ {(5,9)} - Yo + {(3,3)} - Zo = {(13,4),(27,5)}

Il

A particular solution of (II) is:

Xy = {(Oa 1)}7 ‘h = (0, Zy = {(133)}
X, =0, Y, =0, Z, ={(0,1)}
XD = {(37 2)}a YD = @7 Zl:l = {(3a 2)’ (13’4)}

Thus, (X,Y, Z) is a solution of (I) if and only if there exists W € (J,)* such
that:

X
Y =
VA
{(172)} {(Ovl)} 'h+{(372)} =
o | (w)+ 0
{(5a4)} {(1’3)} “h+ {(0’ 1)} g+ {(3a 2), (1374)} =

Rewriting this solution in form of list:

X = Y =W,; Z=
h g

w | a

ie. X =h(W); Y =W; Z = g(h(W)).



A RING TO DESCRIBE SYMBOLIC EXPRESSIONS 211

3. LINEAR EQUATIONS ON J,

In this section some usual definitions of linear algebra are adapted to the
context of p-tangles and a necessary and sufficient condition for the existence
of solution of a linear equations system on J, is obtained. The proofs of the
results included in this section are in [4].

Note. M, xm(J,) is the set of matrix of “n” files and “m” columns with
coefficients in the ring J,. Also, if A € M,,xn(J,), then A; denotes the "i-file”
of A.

Finally, if A € M,xn(J,) and B € M,x:(J,) then (A | B) is the amplified
matrix of the system A- X = B, so (A | B) € Mux(m+1)(J5)-

DEFINITION 3.1. Given A € M, xm(J,), A is a non singular matrizif VX €
Mpa(J)(A-X =04 X =0). Also, S € M, (J,) is a generator system of
the solutions of the system A-X =0 if

VX € Mpi(Jp) (4 X=0 & 3Z2€ Myn(J,) X=52)
Moreover, if S is a non singular matrix, S is a fundamental system of solutions
of A-X =0.

THEOREM 3.2. If A € M,«m(J,) then any of the following properties is
true:
1. VX € Mpsi(Jp), A-X =0 X=0

2. 3S € Myxi(J,) such that k < m, and S is a fundamental system of
solutions of A+ X = 0. Also, if 0 # A then k < m.

LeEMMA 3.3. Let ay,as,...,a, be elements of J,. The equation .. a; *
X, = {1} has a solution if and only if there exists i € {1,... ,n} such that a;
is invertible.

THEOREM 3.4. If A € M, xn(J,) and B € M,x(J,) then the following
conditions are equivalent:
1. The equation A - X = B has a solution

2. There exists a fundamental system of solutions of (A | B)-Y = 0, and
for any fundamental system of solutions of (A | B) - Y = 0 the last file
(“m-th file”) has an invertible coefficient.

3. There exists a fundamental system of solutions of (A | B) - Y = 0 such
that its last file (m-th) file has some invertible coefficient.
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