Some Remarks on Hadamard's Inequalities for Convex Functions

SEVER SILVESTRU DRAGOMIR

Dep. of Math., University of Timişoara, B-dul V. Pârvan 4, R-1900 Timişoara, România

(Presented by Carlos Benítez)

AMS Subject Class. (1991): 26D15.

Received October 7, 1993

1. Introduction

In paper [4] we introduced the following two mappings associated to a convex function $f: [a, b] \to \mathbb{R}$; $H, F: [0, 1] \to \mathbb{R}$ given by

$$H(t) := \frac{1}{b-a} \int_a^b f\left(tx + (1-t)\frac{a+b}{2}\right) dx$$

and

$$F(t) := \frac{1}{(b-a)^2} \int_a^b \int_a^b f(tx + (1-t)y) \, dx \, dy$$

and we proved the following main properties

- (i) H, F are convex in [0, 1].
- (ii) H increases monotonically on [0,1], F is decreasing on [0,1/2] and increasing on [1/2,1].
- (iii) We have the bounds

$$\inf_{t \in [0,1]} H(t) = H(0) = f\left(\frac{a+b}{2}\right) ;$$

$$\sup_{t \in [0,1]} H(t) = H(1) = \frac{1}{b-a} \int_a^b f(x) \, dx ;$$

$$\sup_{t \in [0,1]} F(t) = F(0) = F(1) = \frac{1}{b-a} \int_a^b f(x) \, dx ;$$

$$\inf_{t \in [0,1]} F(t) = F(1/2) = \frac{1}{(b-a)^2} \int_a^b \int_a^b f\left(\frac{x+y}{2}\right) \, dx \, dy .$$

(iv) One has the inequalities

$$f\left(\frac{a+b}{2}\right) \le F(1/2)$$
 and $H(t) \le F(t)$ for all $t \in [0,1]$.

The main aim of this note is to give another type of refinements to the classical inequality due to Hadamard

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \frac{f(a)+f(b)}{2} .$$

For other inequalities connected with this main result in Mathematical Analysis, we send to the recent papers [1-10] where further references are given.

2. THE MAIN RESULTS

Let [a, b] be a compact interval of real numbers, $d := \{x_i \mid i = \overline{0, n}\} \subset [a, b]$ a division of the interval [a, b] given by

$$d: a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$
 $(n > 1)$

and f a bounded mapping on [a, b]. We consider the following sums

$$h_d(f) := \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) \quad \text{(called Hadamard's inferior sum)}$$

$$H_d(f) := \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} (x_{i+1} - x_i) \quad \text{(called Hadamard's superior sum)}$$

and Darboux's sums

$$s_d(f) := \sum_{i=0}^{n-1} m_i(x_{i+1} - x_i) , \qquad S_d(f) := \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i)$$

where

$$m_i = \inf_{x \in [x_i, x_{i+1}]} f(x)$$
 , $M_i = \inf_{x \in [x_i, x_{i+1}]} f(x)$, $i = 0, \dots, n-1$.

It is well-known that f is Riemann integrable on [a, b] if and only if

$$\sup_{d} s_d(f) = \inf_{d} S_d(f) = I \in \mathbb{R}$$

and in this case

$$I = \int_a^b f(x) \, dx \ .$$

The following theorem holds:

THEOREM. Let $f: [a, b] \to \mathbb{R}$ be a convex function on [a, b]. Then

- (i) $h_d(f)$ increases monotonically over d, i.e. for $d_1 \subseteq d_2$ one has $h_{d_1}(f) \leq h_{d_2}(f)$.
- (ii) $H_d(f)$ is decreasing over d.

(iii) We have the bounds

(1)
$$\frac{1}{b-a}\inf_{d}h_{d}(f) = f\left(\frac{a+b}{2}\right), \quad \sup_{d}h_{d}(f) = \int_{a}^{b}f(x)\,dx$$

and

(2)
$$\inf_{d} H_{d}(f) = \int_{a}^{b} f(x) dx, \quad \sup_{d} H_{d}(f) = \frac{f(a) + f(b)}{2}.$$

Proof. (i) Without lost of generality we can assume that $d_1 \subseteq d_2$ with $d_1 = \{x_0, \ldots, x_n\}$ and $d_2 = \{x_0, \ldots, x_k, y, x_{k+1}, \ldots x_n\}$ where $y \in [x_k, x_{k+1}]$ $(0 \le k \le n-1)$. Then

$$h_{d_2}(f) - h_{d_1}(f) = f\left(\frac{x_k + y}{2}\right)(y - x_k) + f\left(\frac{y + x_{k+1}}{2}\right)(x_{k+1} - y) - f\left(\frac{x_k + x_{k+1}}{2}\right)(x_{k+1} - x_k).$$

Let put

$$\alpha = \frac{y - x_k}{x_{k+1} - x_k}, \quad \beta = \frac{x_{k+1} - y}{x_{k+1} - x_k}, \quad x = \frac{x_k + y}{2}, \quad z = \frac{y + x_{k+1}}{2}.$$

Then

$$\alpha + \beta = 1,$$
 $\alpha x + \beta y = \frac{x_k + x_{k+1}}{2}$

and by the convexity of f we deduce that $\alpha f(x) + \beta f(z) \ge f(\alpha x + \beta z)$, i.e. $h_{d_2}(f) \ge h_{d_1}(f)$.

(ii) For d_1, d_2 as above, we have

$$H_{d_2}(f) - H_{d_1}(f) = \frac{f(x_k) + f(y)}{2} (y - x_k)$$

$$+ \frac{f(y) + f(x_{k+1})}{2} (x_{k+1} - y) + \frac{f(x_k) + f(x_{k+1})}{2} (x_{k+1} - x_k)$$

$$= \frac{f(y)(x_{k+1} - x_k)}{2} - \frac{f(x_k)(x_{k+1} - y) + f(x_{k+1})(y - x_k)}{2}.$$

Now, let α, β be as above and $u = x_k, v = x_{k+1}$. Then $\alpha u + \beta v = y$ and by the convexity of f we have $\alpha f(u) + \beta f(v) \ge f(y)$, i.e. $H_{d_2}(f) \le H_{d_1}(f)$ and the statement is proved.

(iii) Let $d = \{x_0, \ldots, x_n\}$ with $a = x_0 < x_1 < \cdots < x_n = b$. Put $p_i := x_{i+1} - x_i$, $u_i = (x_{i+1} + x_i)/2$, $i = 0, \ldots, n-1$. Then by Jensen's discrete inequality

$$f\left(\frac{\sum_{i=0}^{n-1} p_i u_i}{\sum_{i=0}^{n-1} p_i}\right) \le \frac{\sum_{i=0}^{n-1} p_i f(u_i)}{\sum_{i=0}^{n-1} p_i}$$

and since

$$\sum_{i=0}^{n-1} p_i = b - a, \quad \sum_{i=0}^{n-1} p_i u_i = \frac{b^2 - a^2}{2} ,$$

we deduce the inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a}h_d(f)$$
.

If $d = d_0 = \{a, b\}$, we obtain $h_{d_0}(f) = f((a+b)/2)$, which proves the first bound in (1).

By the first inequality in Hadamard's result, we have

$$f\left(\frac{x_i + x_{i+1}}{2}\right) \le \frac{1}{x_{i+1} - x_i} \int_{x_i}^{x_{i+1}} f(x) dx, \quad i = 0, \dots, n-1,$$

which gives, by addition,

$$h_d(f) = \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i)$$

$$\leq \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) dx$$

$$= \int_a^b f(x) dx,$$

for all d a division of [a, b].

Since

$$s_d(f) \le h_d(f) \le \int_a^b f(x) dx$$
, d is a division of $[a, b]$,

and f is Riemann integrable on [a, b], i.e.

$$\sup_{d} s_{d}(f) = \int_{a}^{b} f(x) dx,$$

it follows that

$$\sup_{d} h_d(f) = \int_a^b f(x) \, dx,$$

which proves the relation (1).

To prove the relation (2), we observe, by the second inequality in Hadamard's result, that

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) dx,$$

$$\leq \sum_{i=0}^{n-1} \frac{f(x_{i}) + f(x_{i+1})}{2} (x_{i+1} - x_{i})$$

$$= H_{d}(f)$$

where d is an arbitrary division of [a, b].

Since

$$H_d(f) \leq S_d(f)$$
, for all d as above,

and f is integrable on [a, b], we conclude that

$$\inf_{d} H_d(f) = \int_a^b f(x) \, dx$$

Finally, because for all d a division of [a, b] we have $d \supseteq d_0 = \{a, b\}$, thus

$$\sup_{d} H_d(f) = \frac{f(a) + f(b)}{2}$$

and the theorem is proved.

Remark. Let f be a convex mapping on [a, b]. Then for all $a = x_0 < x_1 < \cdots < x_n = b$, we have the following improvement of Hadamard's result

(3)
$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i)$$
$$\leq \frac{1}{b-a} \int_a^b f(x) dx$$
$$\leq \frac{1}{b-a} \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} (x_{i+1} - x_i)$$
$$\leq \frac{f(a) + f(b)}{2}.$$

COROLLARY 1. Let f be as above. Define the sequences

$$h_n(f) := \frac{1}{n} \sum_{i=0}^{n-1} f\left(a + \frac{2i+1}{2n}(b-a)\right)$$

$$H_n(f) := \frac{1}{2n} \sum_{i=0}^{n-1} \left[f\left(a + \frac{i}{n}(b-a)\right) + f\left(a + \frac{i+1}{n}(b-a)\right) \right]$$

for $n \geq 1$. Then we have the inequalities

(4)
$$f\left(\frac{a+b}{2}\right) \le h_n(f) \le \frac{1}{b-a} \int_a^b f(x) dx$$
$$\le H_n(f) \le \frac{f(a) + f(b)}{2}, \qquad n \ge 1.$$

Moreover, one has

(5)
$$\lim_{n \to \infty} h_n(f) = \lim_{n \to \infty} H_n(f) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Proof. The inequalities (4) follows by (3) for $d := \{x_i = a + \frac{i}{n}(b-a) \mid i = \overline{0,n}\}$. The relation (5) is obvious by the integrability of f. We omit the details. \blacksquare

Corollary 2. Let $f:[a,b] \to \mathbb{R}$ be a convex mapping on [a,b]. Define the sequences

$$t_n(f) := \frac{1}{2^n} \sum_{i=0}^{n-1} f\left(a + \frac{2^i}{2^{n+1}}(b-a)\right) 2^i$$

and

$$T_n(f) := \frac{1}{2^{n+1}} \sum_{i=0}^{n-1} \left[f\left(a + \frac{2^i}{2^n}(b-a)\right) + f\left(a + \frac{2^{i+1}}{2^n}(b-a)\right) \right] 2^i$$

 $(n \ge 1)$. Then we have

- (i) t_n is monotonous increasing;
- (ii) T_n is monotonous decreasing;
- (iii) The following identities are valid

$$\sup_{n\geq 1} t_n(f) = \lim_{n\to\infty} t_n(f) = \frac{1}{b-a} \int_a^b f(x) \, dx$$

$$\inf_{n\geq 1} T_n(f) = \lim_{n\to\infty} T_n(f) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Proof. (i), (ii). Is obvious by (i) and (ii) of Theorem for

$$d_n := \left\{ x_i = a + \frac{2^i}{2^n} (b - a) \mid i = \overline{0, n} \right\} \subseteq d_{n+1}, \quad n \in \mathbb{N}.$$

(iii). It follows from bounds (1), (2) and the fact that f is Riemann integrable on [a, b].

APPLICATIONS. a) Let $0 \le a = x_0 < x_1 < \dots < x_n = b$ and $p \ge 1$. Then we have the inequalities

$$\left(\frac{a+b}{2}\right)^{p} \leq \frac{1}{b-a} \sum_{i=0}^{n-1} \left(\frac{x_{i}+x_{i+1}}{2}\right)^{p} (x_{i+1}-x_{i}) \leq \frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}$$
$$\leq \frac{1}{b-a} \sum_{i=0}^{n-1} \frac{x_{i}^{p}+x_{i+1}^{p}}{2} (x_{i+1}-x_{i}) \leq \frac{a^{p}+b^{p}}{2}.$$

b) Suppose that 0 < a and x_i are as above. Then one has

$$\frac{2}{a+b} \le \frac{2}{b-a} \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)}{(x_{i+1} + x_i)} \le \frac{\ln b - \ln a}{b-a}$$
$$\le \frac{1}{b-a} \sum_{i=0}^{n-1} \frac{x_{i+1}^2 - x_i^2}{2x_i x_{i+1}} \le \frac{a+b}{2ab}.$$

c) We have the following refinement of arithmetic mean-geometric mean inequality

$$\frac{a+b}{2} \ge \prod_{i=0}^{n-1} \left(\frac{x_i + x_{i+1}}{2}\right)^{\frac{(x_{i+1} - x_i)}{b-a}} \ge \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}}$$
$$\ge \prod_{i=0}^{n-1} (x_i x_{i+1})^{\frac{(x_{i+1} - x_i)}{2(b-a)}} \ge \sqrt{ab}$$

where a > 0 and x_i are as above.

REFERENCES

- [1] ALZER, H., A note on Hadamard's inequalities, C.R. Math. Rep. Acad. Sci. Canada, 11 (1989), 255-258.
- [2] DRAGOMIR, S.S., Some refinements of Hadamard's inequalities, C.M. Metod
- (Bucharest), 11 (1990), 189-191.
 [3] DRAGOMIR, S.S., Two refinements of Hadamard's inequalities, Coll. Sci. Pap. Fac. Sci. Kragujevać, 11 (1990), 23-26.
- [4] DRAGOMIR, S.S., Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., (1992) (in press) .
- [5] DRAGOMIR, S.S., PEČARIĆ, J.E., SÁNDOR, J., A note on the Jensen-Hadamard inequalities, Anal. Numer. Theor. Approx., 19 (1990), 29-34.
- DRAGOMIR, S.S., PEČARIĆ, J.E., A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat., 7 (1991), 103-107.
- [7] PEČARIĆ, J.E., A note on Hadamard's inequalities, Macedonian Acad. Sci. and Arts, Sec. Math. Sci., 10 (1989), 21-23.
- [8] SÁNDOR, J., Some integral inequalities, Elem. Math., 43 (1988), 177-180.
- [9] SÁNDOR, J., An application of the Jensen-Hadamard inequality, Nieuw. Arch. Wiskunde, (in press).
- [10] VASIĆ, P.M., LACKOVIĆ, I.B., Notes on convex functions (1), Univ. Beograd Publ. Elektr. Fak. Ser. Mat. Fiz., No. 577- No. 598 (1977), 21-24.