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0. INTRODUGTION AND POSITION OF THE PROBLEM
This is an extract of some results taken from recent works (cf. [1] and [2]), where

we have considered the system: (P;)(uw.) and (P):

—-Ay. =0 on
a .
(Pr)(w) %yc + €y = U, inll=9dxQ

/chdl‘ =0; y € ()
(P2) Je(ue) = min{J (v); v € Uya}

where —%y( is the normal derivative of y,, Q is a regular and bounded open set in the
Euclidean space R™ with T' = 9 its boundary assumed to be smooth. We denote
u, the optimal control solution of the problem (P,).

(0.1) Je(v) = /F(yc(v) —z)%dT +./r (%y((v) - 22)2 dar,

ye(v) is a solution of (P;)(v), v € Uud, Uasq is a closed linear subspace of U with
finite dimension (cf. [1]) or infinite dimension (cf. [2]) where:

(0.2) U= {veLz(F):/rvdI‘=0},

z1 and 2, are fixed functions in the space L*(T") (decision functions).

We expose here the results obtained in [1] and [2] concerning the existence of
the state y.(u.) and control u, and study their convergence.

In the first section, we assume that U,q is of finite dimension. We prove in
that case that the state y.(u.) converges in the Sobolev space H;() and that the
optimal control u, exists and converges in L*(T').
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We end this extract with some concluding remarks.

1. THE FINITE DIMENSIONAL CASE

1.1. EXISTENCE OF THE PERTURBED STATE AND CONTROL FOR THE SYSTEM:
(P1)(ue) AND (P;). The space of admissible controls U4 will be a linear subspace
of U with finite dimension m > 1. H'(Q) is the usual Sobolev space with its scalar
product and associated norm. We look for solutions (i.e.: the states of) the system
(P1)(ue) in the space:

(1.1) Vo= {yeHl(Q):/rydI‘=0}.
For the existence of the state we have the following theorem:

THEOREM 1.1. For all v € U,y, there exists a unique solution of the problem
(P1)(uc) denoted by y.(v) in the space V.

The proof of this theorem is classic and based on the variational formulation of
the problem P (v).
For the existence of the optimal control we have the following theorem:

THEOREM 1.2. There exists a non vanishing subset X, of U,q, such that for all
ue € X, we have:

(1.2) Je(ue) = min{J(v);v € Upq}-

Proof. To prove the existence of X, it suffices to prove that the following con-
ditions are satisfied (cf. [7]):

(i) The map v — J(v) is strictly convex and L.s.c. (i.e. lower semi-continuous)
on the space Uyy.

(ii) For all sequence (v,) of elements in Uyq such that ||va||2qry — 400 (when
n — 400).

The map is differentiable on L*(T") then it is continuous so the condition (i) is
satisfied. The condition (ii) results from the next Lemma. 1

LEMMA 1.1. The map B, : U — L*(T") which associates to each v € U the
element B.(v) := y.(v)|r is a linear, bounded and injective map into L*(T").

Remark 1.1. Since U,q is a finite dimensional space, to decide the unicity of
solution of (P,), one can use the Hessian function associated to J,, after fixing (for
example) an orthonormal basis of Uyqg.
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1.2. STUDY OF THE CONVERGENCE OF THE STATE Y¢ AND CONTROL .. The
main result of this section is the following theorem:

THEOREM 1.3. We have the following statements:

(i) The control u, converges strongly on the space L*(I") to u € Uaq, satisfying:
J(u) = min{J(v); v € Upa}; where J(v) := [p(y(v) — 21)2dT + [p(v — 22)*dT
and y(v) is the solution of the problem:

—Ay(v) =0 on
(P,)(v) %y(v) = iml=900
fy@)ar =0 y() e H'(@)

(i) The state y, converges strongly in the space H'(1) to the state y(u) solution
of the system (Py)(u).

The proof will be given in more general case in the second section (sec theo-
rem 2.2). (

2. THE INFINITE DIMENSIONAL CASE

2.1. EXISTENCE OF THE PERTURBED STATE AND CONTROL FOR THE SYSTEM:
(P1)(ue) AND (P;). The space of admissible controls U, will be an arbitrary closed
linear subspace of & with infinite dimension. Then, for all v € U, 4, there exists a
unique solution of the problem (P;)(v) denoted by y.(v) in the space V.

To prove the existence of the optimal control (theorem 2.1) we need the following
proposition.

PROPOSITION 2.1. The map B, : U,g — L*(T') which associates to each v €
Uqa the element B (v) := y.(v)|r is linear, bounded and injective map into L¥(T).
If the space B(U,q) is closed in L*(T"), then there exists a constant C, > 0 (in fact,
Ce = (||B7Y])7! where B! is the operator inverse of Be defined on the range B, (Uyq)
such that: :

(2.1) Cellvllzery < Nlye(@)lzzry  for all v € Upg.
For the proof see [2].
THEOREM 2.1. Let U,q a closed linear subspace of infinite dimension in the

space U. If the map B, : Upg — LZ(F) is of closed range, then there exists a non
vanishing subset X, of U4, such that for all v, € X, we have:

Je(ue) = min{J (v); v € Uaa}

Remark 2.1. We have made the assumption on B, (defined on U,q4 to be of closed
range, this is not always the case. But if U,q is of finite dimension (for example)
this is true, in [2] we will give another proof not needing this assumption. (cf. [2]).
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2.2. STUDY OF THE CONVERGENGE OF THE STATE y. AND CONTROL u,. The
main result of this section is the following theorem.

THEOREM 2.2. We suppose that the map B, : U,q — L?(T") is of closed range.
Then we have the following statements:

(1) The control u, converges weakly in the space L%(T) to u € U4, satisfying:
J(u) = min{J(v);v € Upa},
where J(v) = Jp(y(v) — z1)?dT + [r(v — 22)%dT and y(v) is the solution of the

problem:

—Ay(v)=0 on ()

0 = in=0Q
(Py)(v) %J(v) =0 inl=

/ y(v)dT =0: y(v)e H(N)
r
(i1) The state y, converges strongly in the space H'(£2) to the state y(u), solution
of the system (Py)(u).
Proof. As the control 0 is in the space U,q4, we have:

Je(ue) < J(0) = ”21||2L?(r) + ”22”2LZ(F)§

then there exists two constants C; > 0 and C3 > 0 such that:

(2.2) [Yellzzmy < €1 and - luzzry < Cs

(ye denotes the solution of the problem (P;)(u.)). Then we can say that (u.) con-
verges weakly in L*(T) to an element w € U,qg. Using the variational formulation
of the problem (P;)(u.), we deduce that there exists a constant C3 > 0 such that:
[lyellrri@) < Cs independently of ¢. Consequently the state y. converges weakly in
the space H(£) to an element y(u) (denoted by y) which is solution of the problem:

—Ay =0 on )

9] .
(P3)(w) —y=u mIl=0%0

v

/de -0, ye H'(Q)
r

In order to prove the strong convergence of the state y. to y in H(Q), it suffices
to prove that || Vy — Vy||2(q) converges to 0, when ¢ — 0. We have:

(2.3) IVy = VyllZag) = /Q [Vy |* de — 2/9 VyVy. dz + /Q |Vy|?dz
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We remark that an application of Green formula to the problem (/;)(u.) gives:

/Q[Vyclzda:z—eAyde+e/l‘ycu(dF.

Since ||yc||m1(a) < Cs and (uc) converges weakly in L*(T') to u, then by the trace
theorem (cf. [9]), we can assert that: [, |Vye|® dz converges to fryudI when ¢ — 0.
Consequently, [[Vy — VyCHi;(Q) converges (when € — 0) to

_ 2
/Fyudl‘ /Q]Vy| dz,

and this quantity vanishes because y is solution of (Py)(u).
Again by the trace theorem and the continuity of the norm in L?(T'), we obtain
that for all v € Uyy

(2.4) J(u) = ]in& Je(ue) < lin& Je(v) = J(v).
This completes the proof. |

Remark 2.2. Let {¢1, @2, - -, $n, ...} be an orthonormal basis of the space L*(I").
If the space Uyq is included in ! (i.e. the space of u = 3 w;¢; with 3 |u;| < o0) then
(cf. [5]) the control u, converges strongly to u in U,q4. We left open the problem to
prove the strong convergence of optimal control (u.) in general case: this is made
in [2].

3. CONCLUSION

We have established the existence of the state and the control for the perturbed
boundary optimal control system: (P)(uc) and (P2) (under the assumption that
B.(Uyq) is closed) for a functional cost J, which is not strictly convex and defined on
the boundary. We have considered U,y the space of admissible controls as a linear
subspace of . Then one can replace (in all former statements) U,q by W + U
where W is a closed and bounded convex set in U. It is interesting to look for other
convex sets of admissible controls for which our techniques work.
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