The Bidual of the Space of Polynomials on a Banach Space

J.A. Jaramillo^{1,*}, A. Prieto^{1,*} and I. Zalduendo²

- Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040-Madrid, Spain
 - ² Departamento de Economía y Matemática, Universidad de San Andrés, CC 1983 Correo Central, (1000) Buenos Aires, Argentina

(Presented by Jesús M.F. Castillo)

AMS Subject Class. (1991): 46B10, 46B28

Received July 20, 1994

Questions concerning extensions of polynomials or analytic functions from a Banach space E to its bidual E'', and others about reflexivity and related properties on spaces of homogeneous polynomials $P^k(E)$, have recently spurred interest regarding the structure of the bidual of a space of polynomials [4], [11], [18]. In this paper we study the relationship between the bidual of $P^k(E)$ and the space of polynomials over E''. Just as in the one-dual case the Borel transform [14] provides a map relating $P^k(E)'$ with $P^k(E')$, we define a map β through which elements of the bidual of $P^k(E)$ may be viewed as polynomials over E'', and study this map to obtain information about $P^k(E)''$. Our definition and our subsequent study of β require a presentation of the space of polynomials over a Banach space as the dual of a space spanned by certain evaluation mappings. It is well-known that, for a Banach space E, the space $P^k(E)$ of all continuous k-homogeneous polynomials on E is a dual space (see [17], [16]). Here we develop a short way of seeing this, which will be useful in the sequel. Recall that if E and F are complex Banach spaces, a map P from E into F is said to be a continuous k-homogeneous polynomial if there exists a continuous k-linear map $A: E \times \cdots \times E \to F$ such that P(x) = A(x,...,x).

For a complex Banach space E, fix $k \in N$ and consider the map

$$\delta: E \longrightarrow P^k(E)'$$

defined by $\delta(x) = e_x$, where $e_x : P^k(E) \to \mathbb{C}$ is the evaluation at x given by $e_x(P) = P(x)$. Note that $||e_x|| = ||x||^k$. It is easy to check that δ is a continuous k-homogeneous polynomial, whose associated k-linear map is $\Delta(x_1, ..., x_k)(P) = A(x_1, ..., x_k)$, where A is the (unique) symmetric k-linear map corresponding to P. Let S_k be the (not necessarily closed) linear subspace spanned by $\{e_x : x \in E\}$

in $P^k(E)'$. Each $s \in S_k$ admits a (non-unique) representation as $s = \sum_{j=1}^n e_{x_j}$, with $x_1, ..., x_n$ in E. We define the transpose of δ ,

$$b: S'_k \longrightarrow P^k(E)$$

^{*}Partially supported by DGICYT, PB 90/0044

by $b(T) = T \circ \delta$. We obtain that b is an isometric isomorphism from S'_k onto $P^k(E)$. Thus, we have the following

THEOREM 1. With the preceding notations, the dual of S_k is isometrically isomorphic to the space $P^k(E)$.

Also we can introduce the norm on S_k , given by $||s||_{\pi} = \inf \{ \sum_{j=1}^n ||x_j||^k \}$, where the infimum is taken over all the representations $s = \sum_{j=1}^n e_{x_j}$. It can be checked that $||s||_{\pi} = ||s||$ for every $s \in S_k$. This shows that S_k can be identified with $\bigotimes_{k,s,\pi} E$, the k-fold symmetric tensor product of E, endowed with the projective norm (see [17], [16]), via the correspondence $e_x \longleftrightarrow x \otimes \cdots \otimes x$.

In [3], Aron and Berner found a way of extending any \mathbb{C} -valued k-homogeneous polynomial P defined on a Banach space E to a polynomial \overline{P} on the bidual E'' (see also [19]). This provides a linear extension map

$$(AB): P^k(E) \longrightarrow P^k(E'')$$

between the spaces of k-homogeneous polynomials on E and E'', which is given by $(AB)(P) = \overline{P}$. This map is continuous, and in fact it has been proved by Davie and Gamelin [8] that $\|\overline{P}\| = \|P\|$, with the usual norm on spaces of polynomials.

It should be mentioned here that, given any $u \in \operatorname{End}(E''|E)$ (endomorphims of E'' leaving fixed all points of E), one may modify the construction of (AB) obtaining a different extension map. The Aron-Berner map (AB) corresponds to u = identity.

As usual, we denote by $P_f^k(E)$ the linear subspace of $P^k(E)$ spanned by $\{\phi^n : \phi \in E'\}$ and $P_c^k(E)$ its completion in $P^k(E)$. A polynomial P in $P_f^k(E)$ (respectively, in $P_c^k(E)$) will be called of finite type (respectively, compact type). Note that (AB) maps polynomials of finite (compact) type into polynomials of finite (compact) type.

In [6], Aron and Schottenloher proved that $P^{k-1}(E)$ is isomorphic to a complemented subspace of $P^k(E)$. This also gives that $P_c^{k-1}(E)$ is isomorphic to a complemented subspace of $P_c^k(E)$. Using the fact that the Aron-Berner map respects this decomposition, we obtain the following result:

PROPOSITION 1. (1) $P^k(E)$ is reflexive if and only if (AB) is weakly compact. (2) $P_c^k(E)$ is reflexive if and only if the restriction of (AB) to $P_c^k(E)$ is weakly compact.

Since $P^k(E)$ can be considered as a subspace of $P^k(E'')$ via the Aron-Berner map, for $z \in E''$ the evaluation maps $e_z \in P^k(E'')'$ are also elements of $P^k(E)'$. The map β may be defined by transposing the polynomial map $E'' \longrightarrow P^k(E)'$ taking z into e_z . That is,

DEFINITION. The map $\beta: P^k(E)'' \longrightarrow P^k(E'')$ is given by $\beta(A)(z) = A(e_z)$.

Note that restricting β to the canonical inclusion of $P^k(E)$ in $P^k(E)''$ we obtain the Aron-Berner map (AB). Thus β is an extension of (AB). Also, β is a continuous linear operator of norm one.

In order to discuss other presentations of β , we will need some notation. As before, let S_k be the (non-closed) linear space spanned by the evaluations $\{e_z : z \in E''\}$. We denote the norm on $P^k(E)'$ by $\| \| \|$, and that on $P^k(E'')'$ by $\| \| \|$. Thus for any $s \in S_k$, $\| \|s \| \le \| s \|$. We then have

$$(S_k, || ||) \longrightarrow (S_k, || ||) \hookrightarrow P^k(E)'.$$

Since the space on the left is a predual of $P^{k}(E'')$, by transposing we have

$$\beta: P^k(E)'' \xrightarrow{id} (S_k, ||| |||)' \longrightarrow P^k(E'').$$

This is the definition of β used by Aron and Dineen in [4], in the case where polynomials over E are weakly continuous on bounded sets. Another presentation of β is the following. Denote by π the transpose of the canonical injection of $(S_k, || ||)$ into $(S_k, || ||)$ ". Then by composing the maps

$$P^k(E)'' \xrightarrow{(AB)''} P^k(E'')'' \xrightarrow{\pi} P^k(E'')$$

one obtains the same map as above, that is, $\beta = \pi \circ (AB)''$. Note that if E is reflexive, then $\beta: P^k(E)'' \longrightarrow P^k(E)$ is the canonical projection from a third dual space onto the first dual. For non-reflexive E, since $P^k(E)$ is (through (AB)) a proper subspace of $P^k(E'')$, a non-zero linear form over the second space may be null on the first. Thus some caution might be in order when using phrases like "s = 0", " s_1, \ldots, s_n are linearly independent", or "the linear space spanned by e_z , $z \in E'''$ ". Actually, when speaking of elements of S_k , it will follow from Proposition 2 that there is no ambiguity in such phrases.

PROPOSITION 2. Let $z_1, \ldots, z_k \in E''$ be given. If $\sum_{j=1}^n \overline{P}(z_j) = 0$ for all $P \in P_f^k(E)$, then $\sum_{j=1}^n Q(z_j) = 0$ for all $Q \in P^k(E'')$.

In the proof of proposition above, we use the following lemma, which we believe has interest in itself and give in slightly greater generality.

LEMMA. For $i=0,\ldots,n$, let $(\gamma_i,\varphi_i,\ldots,\psi_i)$ be k-tuples of continuous linear functionals on X. If $\gamma_0\varphi_0\cdots\psi_0=\sum_{i=1}^n\gamma_i\varphi_i\cdots\psi_i$ then for any $\phi\in L^k_s(X')$

$$\phi(\gamma_0, \varphi_0, \ldots, \psi_0) = \sum_{i=1}^n \phi(\gamma_i, \varphi_i, \ldots, \psi_i).$$

Now, we consider the initial topology on $P^k(E'')$ induced by the evaluations $\{e_z: z \in E''\}$ and call this the S_k -topology. Thus, a net (Q_i) of elements of $P^k(E'')$ is S_k -convergent to Q if for each $s = \sum_{j=1}^n e_{z_j} \in S_k$,

$$s(Q_i) = \sum_{j=1}^n Q_i(z_j)$$
 converges to $\sum_{j=1}^n Q(z_j) = s(Q)$ with i .

Remark 1. (1) By mimicry of the classical proof of the fact that the dual of (X', w^*) is X one obtains that any S_k -continuous linear functional on $P^k(E'')$ can be identified with an element of S_k , in other words, we have $(P^k(E''), S_k)' = S_k$.

be identified with an element of S_k , in other words, we have $(P^k(E''), S_k)' = S_k$. (2) The S_k -topology is weaker than the w^* -topology $\sigma(P^k(E''), \overline{S_k})$, where $\overline{S_k}$ denotes the closure of S_k in $P^k(E'')'$. Nevertheless, it is easy to see that the S_k -topology coincides with the w^* -topology on bounded subsets of $P^k(E'')$.

The following theorem characterises the image of β in terms of the S_k -topology. Here B_P denotes the closed unit ball of $P^k(E)$ and B_Q will denote the closed unit ball of $P^k(E'')$.

THEOREM 2. Let $Q \in P^k(E'')$. Then the following are equivalent:

- i) $Q \in Im\beta$
- ii) Q is the w^* -limit of a bounded net $(P_i) \subset P^k(E)$.
- iii) Q is the S_k -limit of a bounded net $(P_i) \subset P^k(E)$.
- iv) For some c > 0 and all $z_1, \ldots, z_n \in E''$

$$\left| \sum_{j=1}^{n} Q(z_j) \right| \le c \sup_{P \in B_P} \left| \sum_{j=1}^{n} \overline{P}(z_j) \right|.$$

The constant c in the theorem depends on Q. In fact, $Q = \beta(A)$ for some A with $||A|| \leq c$ if and only if Q is S_k -adherent to cB_P , if and only if c satisfies the inequality in iv). However, if β is surjective the same constant is good for all $Q \in B_Q$. Thus, the surjectivity of β may be expressed in any of the following equivalent ways.

COROLLARY 1. The following are equivalent:

- i) β is surjective.
- ii) There is a constant C such that CB_P is w^* -dense in B_Q .
- iii) There is a constant C such that for all $Q \in B_Q$ and $z_1, \ldots, z_k \in E''$,

$$\left| \sum_{j=1}^{n} Q(z_j) \right| \le C \sup_{P \in \mathcal{B}_P} \left| \sum_{j=1}^{n} \overline{P}(z_j) \right|.$$

iv) $\overline{S_k} \cap Ker(AB)' = 0$. Here (AB)' denotes the transpose of the Aron-Berner map.

Note that condition ii) of the corollary is a Goldstine-type theorem for the inclusion $(AB): P^k(E) \hookrightarrow P^k(E'')$. Condition iii) says that the $\| \|$ -norm and the $\| \|$ -norm are equivalent over S_k . We prove below that a similar but weaker condition holds for any Banach space: $P^k(E)$ is S_k -dense in $P^k(E'')$.

THEOREM 3. The following conditions hold for any Banach space E.

- (1) $P_f^k(E)$ is S_k -dense in $P^k(E'')$.
- (2) $S_k \cap Ker(AB)' = 0$

We know of no case where the map β fails to be surjective. Next, using some ideas of [7], we give a criterion for the surjectivity of β . Recall that a Banach space X has the λ -approximation property if there is a net (T_i) of finite-rank operators on X such that $||T_i|| \leq \lambda$ and $(T_i(x))$ is convergent to x for all $x \in X$.

COROLLARY 2. Suppose that E'' has the λ -approximation property. Then $\lambda^k B_P$ is S_k -dense in B_Q and, therefore, β is surjective.

Another positive result on the image of β is the following. Recall that a k-homogeneous polynomial P on a Banach space X is said to be nuclear if there exist a sequence $(\lambda_i) \in \ell^1$ and a bounded sequence $(\gamma_i) \subset X'$ such that $P(x) = \sum_{i \geq 1} \lambda_i \gamma_i^k(x)$ for all $x \in X$.

Proposition 3. $P_N^k(E'') \subset \operatorname{Im} \beta$.

Recall that $\beta(A) = 0$ if and only if $A(e_z) = 0$ for all $z \in E''$. Thus $\operatorname{Ker} \beta = S_k^{\perp}$, and the injectivity of β is equivalent to the density of S_k in $P^k(E)'$. This condition is related to reflexivity of the space $P^k(E)$, as we see in the next proposition.

PROPOSITION 4. $P^k(E)$ is reflexive if and only if E is reflexive and β is injective.

The nuclear norm of $P \in P_f^k(E')$ is defined by $\|P\|_N = \inf \left\{ \sum_{j=1}^{\infty} \|z_j\|^k \right\}$, where the infimum is taken over all possible representations $P = \sum_{j=1}^{\infty} z_j^k$, with $z_j \in E''$ and $\sum_{j=1}^{\infty} \|z_j\|^k < \infty$ (see [14], [9]). Since $P_N^k(E')$ is the completion of $P_f^k(E')$ under the norm $\|\cdot\|_N$, there exists a quotient map $H : \overline{S_k} \longrightarrow P_N^k(E')$ such that $H(e_z) = z^k$, for all $z \in E''$.

Following Dineen [9], we will say that $P \in P^k(E')$ is an integral polynomial if there exists a regular countably additive Borel measure of bounded variation μ on the compact set $(B_{E''}, w^*)$ such that

$$P(\gamma) = \int_{B_{E''}} z(\gamma)^k d\mu(z)$$
 for all $\gamma \in E'$.

In this case, the integral norm of P is defined by $\|P\|_I = \inf\{\|\mu\|\}$, where the infimum is taken over all measures μ satisfying the definition. The space of integral polynomials is denoted by $P_I^k(E')$ and it follows from [9] that there is an isometric isomorphism $D: P_I^k(E') \longrightarrow P_c^k(E)'$, such that $D(P_z) = e_z$ for all $z \in E''$, where $P_z = z^k$ is the integral polynomial associated to the Dirac measure of z. We have that $P_N^k(E') \subset P_I^k(E')$ and $\|P\|_I \leq \|P\|_N$ for all $P \in P_N^k(E')$.

Thus, we obtain the map

$$\overline{S_k} \xrightarrow{H} P_N^k(E') \hookrightarrow P_I^k(E') \xrightarrow{D} P_c^k(E)'.$$

It is clear that $D \circ H$ is a bijection if and only if $P_N^k(E') = P_I^k(E')$ (e.g., when E'' has the Radon-Nikodým property [1]). In this case, $D \circ H$ is an isomorphism. For spaces E where every polynomial is weakly continuous on bounded sets, the map $D \circ H$ coincides with the map J_k defined in [4]. Consider the transpose of $D \circ H$, which we denote β_c , and the inclusion $i : P_c^k(E) \hookrightarrow P^k(E)$, with bitranspose i''. Then, we obtain that $\beta_c = \beta \circ i''$ and, using this, we arrive at the following:

THEOREM 4. Suppose that E'' has the Radon-Nikodým property and the approximation property. Then

- (1) $\beta_c: P_c^k(E)'' \to P^k(E'')$ is an isomorphism.
- (2) $\beta: P^k(E)'' \to P^k(E'')$ is surjective.
- (3) $\beta: P^k(E)'' \to P^k(E'')$ is injective if and only if $P_c^k(E) = P^k(E)$ (or, equivalently, every $P \in P^k(E)$ is weakly sequentially continuous). In this case, β is an isomorphism.

Taking into account that reflexive Banach spaces verify the Radon-Nikodým property, some consequences of the preceding theorem can be formulated for this class of spaces.

COROLLARY 3. For a Banach space E with the approximation property, the following conditions are equivalent, and imply that β is an isomorphism.

- i) $P^{k}(E)$ is reflexive
- ii) $P_c^k(E)$ is reflexive
- iii) E is reflexive and $P^k(E) = P_c^k(E)$
- iv) E is reflexive and every $P \in P^k(E)$ is weakly sequentially continuous.

In what follows, we denote $\beta^k: P^k(E)'' \longrightarrow P^k(E'')$ the map β corresponding to the spaces of k-homogeneous polynomials.

Corollary 3 can be applied, for instance, to $E = \ell^p$, $1 ; here, we obtain that <math>\beta^k$ is an isomorphism (in fact, the identity) if k < p, while β^k is not injective if $k \ge p$. This situation is typical, as we see in the proposition below.

PROPOSITION 5. For a Banach space E, if $\beta^k : P^k(E)'' \longrightarrow P^k(E'')$ is an isomorphism, then for every j < k the map $\beta^j : P^j(E)'' \longrightarrow P^j(E'')$ is an isomorphism.

Note that if E has a quotient isomorphic to ℓ^p , and E'' has the Radon-Nikodým property and the approximation property it can be seen as in [15] that, for $k \geq p$, there exists on E a k-homogeneous polynomial that is not weakly sequentially continuous and, therefore, β^k is not injective for $k \geq p$. This can be applied to $E = L^p[0,1]$: since $L^p[0,1]$ (1 < $p < \infty$) contains a complemented copy of ℓ^2 , we obtain that β^k is not injective for $k \geq 2$.

Examples of Banach spaces satisfying the conditions in Corollary 3 for all $k \in \mathbb{N}$ are the original Tsirelson space, T^* , and any quotient of T^* having the approxi-

mation property (see [2], [5]). An example of non-reflexive Banach space for which $\beta^k: P^k(E) \longrightarrow P^k(E'')$ is an isomorphism for every k, is the Tsirelson*-James space $E = T_J^*$, constructed by Aron-Dineen in [4].

There is a close connection between weak sequential continuity of polynomials and the existence of upper and lower ℓ^p -estimates of sequences, as can be seen in [10], [4], [12] and [13]. This gives criteria for the map β^k to be an isomorphism. We have, for instance, the following.

Remark 2. Suppose that E'' has the Radon-Nikodým property and the approximation property. Then

- (1) If no weakly null normalised sequence in E admits a lower ℓ^p -estimate, then β^k is an isomorphism for all k < p.
- (2) If every weakly null sequence in E' has a subsequence with an upper $\ell^{p'}$ -estimate and $\frac{1}{p'} + \frac{1}{p} = 1$, then β^k is not injective for $k \geq p$.
- (3) If E' has type p' and $\frac{1}{p'} + \frac{1}{p} = 1$, then β^k is not injective for k > p.

REFERENCES

- [1] ALENCAR, R., Multilinear mappings of nuclear and integral type, *Proc. Amer. Math. Soc.*, 94 (1985), 33-38.
- [2] ALENCAR, R., ARON, R., DINEEN, S., A reflexive space of holomorphic functions in infinitely many variables, *Proc. Amer. Math. Soc.*, 90 (1984), 407-411.
- [3] ARON, R., BERNER, P., A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France, 106 (1978), 3-24.
- [4] ARON, R., DINEEN, S., Q-reflexive Banach spaces, preprint.
- [5] ARON, R., MORAES, L., RYAN, R., Factorization of holomorphic mappings in infinite dimensions, Math. Ann., 277 (1987), 617-628.
- [6] ARON, R., SCHOTTENLOHER, M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal., 21 (1976), 7-30.
- [7] CARNE, T., COLE, B., GAMELIN, T., A uniform algebra of analytic functions, Trans. Amer. Math. Soc., 314 (1989), 639-659.
- [8] DAVIE, A., GAMELIN, T., A theorem on polynomial-star approximation, Proc. Amer. Math. Soc., 106 (1989), 351-356.
- [9] DINEEN, S., Holomorphy types on Banach spaces, Studia Math., 39 (1971), 240-288
- [10] FARMER, J., Polynomial reflexivity in Banach spaces, to appear in Isr. J. Math..
- [11] GONZÁLEZ, M., Remarks on Q-reflexive Banach spaces, preprint.
- [12] GONZALO, R., "Suavidad y Polinomios en Espacios de Banach", Ph.D. Thesis, Univ. Complutense de Madrid, Madrid, 1994.
- [13] GONZALO, R., JARAMILLO, J.A., Compact polynomials between Banach spaces, Extracta Math., 8 (1993), 42-48.
- [14] GUPTA, C., "Malgrange Theorem for Nuclearly Entire Functions of Bounded Type on a Banach Space", Ph.D.Thesis, I.M.P.A., Rio de Janeiro and University of Rochester, 1966.
- [15] JARAMILLO, J.A., PRIETO, A., Weak polynomial convergence on a Banach space, *Proc. Amer. Math. Soc.*, **118** (1993), 463-468.
- [16] MUJICA, J., Linearization of bounded holomorphic mappings on Banach space, Trans. Amer. Math. Soc., 324 (2) (1991), 867-887.

- [17] RYAN, R., "Applications of Topological Tensor Spaces to Infinite Dimensional Holomorphy", Ph.D.Thesis, University College, Dublin, 1980.
 [18] VALDIVIA, M., Banach spaces of polynomials without copies of \(\ell^1\), preprint.
 [19] ZALDUENDO, I., A canonical extension for analytic functions on Banach spaces, Trans. Amer. Math. Soc., 320 (2) (1990), 747-763.