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Questions concerning extensions of polynomials or analytic functions from a
Banach space E to its bidual E”, and others about reflexivity and related proper-
ties on spaces of homogeneous polynomials P*(F), have recently spurred interest
regarding the structure of the bidual of a space of polynomials [4], [11], [18]. In
this paper we study the relationship between the bidual of P*(E) and the space of
polynomials over E”. Just as in the one-dual case the Borel transform [14] provides
a map relating P*(E)" with P*(E'), we define a map 8 through which elements of
the bidual of P¥(E) may be viewed as polynomials over E”, and study this map
to obtain information about P*(E)”. Our definition and our subsequent study of 8
require a presentation of the space of polynomials over a Banach space as the dual
of a space spanned by certain evaluation mappings. It is well-known that, for a
Banach space E, the space P*(E) of all continuous k-homogeneous polynomials on
E is a dual space (see [17], [16]). Here we develop a short way of seeing this, which
will be useful in the sequel. Recall that if £ and " are complex Banach spaces, a
map P from £ into I is said to be a continuous k-homogeneous polynomial if there
exists a continuous k-linear map A : E x ---x IF — [ such that P(z) = A(z,...,2).

For a complex Banach space F, fix k € N and consider the map

§: B — PE(EY

defined by §(x) = e, where e, : P¥(E) — C is the evaluation at z given by
ez(P) = P(z). Note that ||e;|| = ||z||*. Tt is casy to check that & is a continuous
k-homogeneous polynomial, whose associated k-linear map is A(zy,...,zx)(P) =
A(zy, ..., k), where A is the (unique) symmetric k-linear map corresponding to P.

Let Sk be the (not necessarily closed) linear subspace spanned by {e, : = € E}
in P¥(E)'. Each s € S admits a (non-unique) representation as s = Yio €qj, With
zy,..., Ty In L. We define the transpose of 6,

b: S — PR(E)
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by b(T) = T 0§. We obtain that bis an isometric isomorphism from S}, onto P*(E).
Thus, we have the following :

THEOREM 1. With the preceding notations, the dual of S is isometrically iso-
morphic to the space P*(E).

Also we can introduce the norm on Sk, given by ||s||x = inf {7, ||z;||¥}, where
the infimum is taken over all the representations s = 3°7_; e;;. It can be checked
that ||s||l = ||s|| for every s € Si. This shows that Si can be identified with
®r,s.x E, the k-fold symmetric tensor product of E, endowed with the projective
norm (see [17], [16]), via the correspondence e; «— z @ --- @ .

In {3], Aron and Berner found a way of extending any C-valued k-homogeneous
polynomial P defined on a Banach space E to a polynomial P on the bidual E”
(see also [19]). This provides a linear extension map

(AB): P*(E) — PX(E")

between the spaces of k-homogeneous polynomials on £ and E”, which is given by
(AB)(P) = P. This map is continuous, and in fact it has been proved by Davie
and Gamelin [8] that ||P|| = |||, with the usual norm on spaces of polynomials.

It should be mentioned here that, given any u € End(E”|E) (endomorphims
of E" leaving fixed all points of E), one may modify the construction of (AB)
obtaining a different extension map. The Aron-Berner map (AB) corresponds to
u =identity.

As usual, we denote by Pfk(E) the linear subspace of P*(E) spanned by {¢" : ¢ €
E'} and Pf(E) its completion in P*(E). A polynomial P in Pf(E) (respectively, in
PX(E)) will be called of finite type (respectively, compact type). Note that (AB)
maps polynomials of finite (compact) type into polynomials of finite (compact) type.

In [6], Aron and Schottenloher proved that P*~!(E) is isomorphic to a com-
plemented subspace of P¥(E). This also gives that P*~!(E) is isomorphic to a
complemented subspace of P¥(E). Using the fact that the Aron-Berner map re-
spects this decomposition, we obtain the following result:

PROPOSITION 1. (1) P¥(E) is reflexive if and only if (AB) is weakly compact.
(2) PX(E) is reflexive if and only if the restriction of (AB) to P*(E) is weakly
compact.

Since P¥(E) can be considered as a subspace of P¥(E") via the Aron-Berner
map, for z € E” the evaluation maps e, € P¥(E")" are also elements of P*(E)".
The map B may be defined by transposing the polynomial map E” — PF(E)
taking z into e,. That is,

DEFINITION. The map f : P¥(E)" — PY¥(E") is given by B(A)(z) = A(e.).

z

Note that restricting /3 to the canonical inclusion of P¥(E) in P*(E)" we obtain
the Aron-Berner map (AB). Thus f3 is an extension of (AB). Also, 3 is a continuous
linear operator of norm one.



126 J.A. JARAMILLO, A. PRIETO, I. ZALDUENDO

In order to discuss other presentations of 8, we will need some notation. As
before, let Sk be the (non-closed) linear space spanned by the evaluations {e, : z €
E"}. We denote the norm on P¥(E)' by || ||, and that on P*(E")’ by || ||. Thus for
any s € S, [|s|| < ||s||. We then have

(S, 111 — (S, I ) = PH(E)".

Since the space on the left is a predual of P¥(E"), by transposing we have
B PHEY =5 (Si Il ) — PH(E").

This is the definition of 3 used by Aron and Dineen in [4], in the case where
polynomials over I are weakly continuous on bounded sets. Another presentation
of 3 is the following. Denote by 7 the transpose of the canonical injection of (S, || ||)
into (Sk, || [[)"”. Then by composing the maps

Pk(E)// (‘/_1_1_3_))" Pk(EI/)II N Pk(Eu)

one obtains the same map as above, that is, 5 = 7 o (AB)". Note that if E is
reflexive, then B : P*(E)" — P*(E) is the canonical projection from a third dual
space onto the first dual. For non-reflexive E, since P¥(E) is (through {AB)) a
proper subspace of P¥(E"), a non-zero linear form over the second space may be
null on the first. Thus some caution might be in order when using phrases like
“s=0", “sq,...,s, are linearly independent”, or “the linear space spanned by e.,
z € E" . Actually, when speaking of elements of S, it will follow from Proposition
2 that there is no ambiguity in such phrases.

PROPOSITION 2. Let z1,... ,z; € E” be given. If ¥}_, P(z;) =0 for all P €
P{(E),then T7_, Q(z;) = 0 for all Q € P*(E").
In the proof of proposition above, we use the following lemma, which we believe

has interest in itself and give in slightly greater generality.

LEMMA. Fori = 0,...,n, let (yi,%i,-.. ,%:) be k-tuples of continuous linear
functionals on X. If yopo - -+ 1o = Y.y i - - - ; then for any ¢ € LF(X")

¢(7039907" . 11/)0) = Z‘ﬁ(p’ia(p!‘,"' 7¢i)'
i=1

Now, we consider the initial topology on P*(E") induced by the evaluations
{e: : z € E"} and call this the Si-topology. Thus, a net (Q;) of elements of
P¥(E") is Si-convergent to @Q if for each s = 7, e.; € Sy,

(@) = Xn: Qi(z;) converges to i Q(z;) = s(Q) with 1.

j=1 i=1
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Remark 1. (1) By mimicry of the classical proof of the fact that the dual of
(X’,w*) is X one obtains that any Si-continuous linear functional on P*(E") can
be identified with an element of Sy, in other words, we have (P*(E"), S)’ = Sk.

(2) The Si-topology is weaker than the w*-topology o(P*(E"),Sk), where Sk
denotes the closure of Sy in P*¥(E")' . Nevertheless, it is easy to see that the
Si-topology coincides with the w*-topology on bounded subsets of P¥(E").

The following theorem characterises the image of 3 in terms of the Si-topology.
Here Bp denotes the closed unit ball of P¥(E) and Bg will denote the closed unit
ball of P¥(E").

THEOREM 2. Let Q € P*(E"). Then the following are equivalent:

i) Q@ € ImB
ii) Q is the w*-limit of a bounded net (P;) C P*(E).
iii) Q is the Si-limit of a bounded net (P;) C P*(E).

iv) For some ¢> 0 and all zy,... ,2, € E”

n

>-Q(z)

=1

n

< c sup P(z;)].
PeBp im]

i=

The constant c in the theorem depends on Q. In fact, @ = B(A) for some A with
||A]l € cif and only if Q is Sy-adherent to cBp, if and only if ¢ satisfies the inequality
in iv). However, if 8 is surjective the same constant is good for all @ € Bg. Thus,
the surjectivity of § may be expressed in any of the following equivalent ways.

COROLLARY 1. The following are equivalent:

i) B is surjective.
i) There is a constant C such that CBp is w*-dense in Bg.

ili) There is a constant C such that for all Q € Bg and zy,... ,z € E",

iﬁ(zj)

7=1

i Q(z;)

< C sup
PeBp

iv) Sy N Ker(AB)' = 0. Here (AB)' denotes the transpose of the Aron-Berner
map.

Note that condition ii) of the corollary is a Goldstine-type theorem for the
inclusion (AB) : P¥(E) — P*(E"). Condition iii) says that the || ||-norm and
the || ||-norm are equivalent over Sx. We prove below that a similar but weaker
condition holds for any Banach space: P¥(E) is Si-dense in P*(E").
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THEOREM 3. The following conditions hold for any Banach space E.

(1) P§(E) is Sk-dense in P*(E").
(2) Skn Ker(AB) =0

We know of no case where the map f3 fails to be surjective. Next, using some
ideas of [7], we give a criterion for the surjectivity of 8. Recall that a Banach space
X has the A-approximation property if there is a net (7}) of finite-rank operators
on X such that ||T;]| < A and (7i(z)) is convergent to z for all z € X.

COROLLARY 2. Suppose that E" has the A-approximation property. Then
A Bp is Sy-dense in Bg and, therefore, 3 is surjective.

Another positive result on the image of 8 is the following. Recall that a k-
homogeneous polynomial P on a Banach space X is said to be nuclear if there exist a
sequence ();) € £* and a bounded sequence (7;) C X’ such that P(z) = Yisq Mivk(z)
for all 2 € X. -

PROPOSITION 3. P{(E") C Im§B.

Recall that 8(A) = 0 if and only if A(e.) = 0 for all z € E”. Thus Kerf = Sit,
and the injectivity of 3 is equivalent to the density of Sy in P*(E)". This condition
is related to reflexivity of the space P*(E), as we see in the next proposition.

PROPOSITION 4. P*(E) is reflexive if and only if E is reflexive and f3 is injective.

The nuclear norm of P € Pf(E') is defined by ||P||x = inf {¥32, ||2;||*} , where
the infimum is taken over all possible representations P = 3-%2, zf, with z; € E”
and 2, ||z;]* < oo (see [14], [9]). Since Py(E') is the completion of Pj(E’)
under the norm || - ||n, there exists a quotient map H : Sy — P&(E’) such that
H(e,) = 2*, for all z € E".

Following Dineen [9], we will say that P € P¥(E’) is an integral polynomial if
there exists a regular countably additive Borel measure of bounded variation p on
the compact set (Bgn,w*) such that

P(v) = /B z(y)fdp(z) forall y € E'.
EII

In this case, the integral norm of P is defined by ||P|[; = inf{||x||}, where the
infimum is taken over all measures p satisfying the definition. The space of integral
polynomials is denoted by Pf(L’) and it follows from [9] that there is an isometric
isomorphism D : PF(E') — PY(EY', such that D(P,) = e, for all z € E”, where
P, = zF is the integral polynomial associated to the Dirac measure of z. We have
that PY(E') C PF(E') and ||P||; < ||P||x for all P € Pf(L").

Thus, we obtain the map

Sk 2L PE(E') — PHE" -2 PH(EY.
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It is clear that D o H is a bijection if and only if P§(E') = Pf(E') (e.g., when
E" has the Radon-Nikodym property [1]). In this case, D o H is an isomorphism.
For spaces E where every polynomial is weakly continuous on bounded sets, the
map D o H coincides with the map Ji defined in [4]. Consider the transpose of
Do H, which we denote f, and the inclusion i : P¥(E) < P¥(E), with bitranspose
i". Then, we obtain that 8. = B 0" and, using this, we arrive at the following:

THEOREM 4. Suppose that E" has the Radon-Nikodym property and the ap-
proximation property. Then

(1) B.: P*(E)" — P*(E") is an isomorphism.

(2) B: P*(E)" — PY(E") is surjective.

(3) B: PH(E)" — P*(I") is injective if and only if PX(E) = P*(E) (or, equiva-
lently, every P € P*(E) is weakly sequentially continuous). In this case, f is
an isomorphism. '

Taking into account that reflexive Banach spaces verify the Radon-Nikodym
property, some consequences of the preceding theorem can be formulated for this
class of spaces.

COROLLARY 3. For a Banach space E with the approximation property, the
following conditions are equivalent, and imply that f is an isomorphism.

i) P*(E) is reflexive
ii) P*(E) is reflexive
iii) E is reflexive and P*(E) = P¥(E)
iv) E is reflexive and every P € P*(E) is weakly sequentially continuous.

In what follows, we denote 8% : P¥(E)" —s P*(E") the map f corresponding
to the spaces of k-homogeneous polynomials.

Corollary 3 can be applied, for instance, to £ = (7, 1 < p < oo; here, we obtain
that B* is an isomorphism (in fact, the identity) if k& < p, while A* is not injective
if k& > p. This situation is typical, as we see in the proposition below.

PROPOSITION 5. For a Banach space E, if ¥ : P*(E)" — P*(E") is an iso-
morphism, then for every j < k the map 7 : PI(E)" —s P3(E") is an isomorphism.

Note that if £ has a quotient isomorphic to £, and E” has the Radon-Nikodym
property and the approximation property it can be seen as in [15] that, for £ >
p, there exists on £ a k-homogeneous polynomial that is not weakly sequentially
continuous and, therefore, 4% is not injective for k& > p. This can be applied to
E = L7[0,1]: since LP[0,1] (1 < p < oo) contains a complemented copy of (2, we
obtain that $* is not injective for &k > 2.

Examples of Banach spaces satisfying the conditions in Corollary 3 for all k € N
are the original Tsirelson space, T, and any quotient of T having the approxi-
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mation property (see [2], [5]). An example of non-reflexive Banach space for which
B* : PX(E) — P*(E") is an isomorphism for every k, is the Tsirelson*-James
space £ = T7j, constructed by Aron-Dineen in [4].

There is a close connection between weak sequential continuity of polynomials
and the existence of upper and lower £P-estimates of sequences, as can be seen in
[10], [4], (12] and [13]. This gives criteria for the map B* to be an isomorphism. We
have, for instance, the following.

Remark 2. Suppose that E” has the Radon-Nikodym property and the approx-
imation property. Then
(1) If no weakly null normalised sequence in E admits a lower (?-estimate, then §*
is an isomorphism for all k < p.
(2) If every weakly null sequence in E’ has a subsequence with an upper 7' -estimate
and ;% + 1; = 1, then B* is not injective for k > p.

(3) If E' has type p’ and ;% + % =1, then f* is not injective for k > p.
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