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INTRODUCTION

Let F' be a closed subsct of a normal topological space X. The construction of
the algebra €(F), of all complex-valued continuous functions on F', when one knows
the algebra €(X) follows from Tietze’s theorem: since the restriction morphism
B(X) — E(F) is surjective, one has

(1) C(F) =4¢(X)/J,

where J denote the ideal of all continuous functions on X vanishing on F. Ana-
logously, if C is a closed submanifold of a Hausdorff o-compact manifold V' of class
r, then the restriction morphism €7(V) — € 7(C) is surjective, thus

2 ¢ (C) = (V)/T,

where I denote the ideal of all differentiable functions on V vanishing on C.

If U is an open set in a topological space X, the construction of ¥(U) follows
from a result of Hager ([8]) (at least when U is a cozero-set): each continuous
function on U is a quotient of two functions defined on X, where the denominator
does not vanish at any point of U; that is to say

®3) CU)=C(X)s={lg: feC(X),g€S5},

where ¥(X)s denotes the localization (or ring of fractions) of €(X) with respect
to the multiplicatively closed subset S = {f € €(X) : 0 ¢ f(U)}. Analogously, if
U is an open set in a Hausdorff o-compact differentiable manifold V of class r, then

Muroz and Ortega proved in [13] that any differentiable function on U is a quotient
of two differentiable functions on V;i.e., taking S ={f € €7(V) : 0 ¢ f(U)},

(4) ETU)=€"(V)s .

However, the algebras involved in these results are topological algebras and the
isomorphisms (1) and (2) are homeomorphisms (the quotient algebra of a topological
algebra by a closed ideal has a natural quotient topology). In the paper we define

* This paper is to appear in J. Math. Anal. Appl.
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a natural topology on the localization of a topological algebra with respect to a
multiplicatively closed set and we prove that (3) and (4) are homeomorphisms.

In general, let A be a symmetric Fréchet algebra, let X be the topological
spectrum of A and let A be the structural sheaf of algebras on X. For U an open
set in X, we denote by Ay the localization of A with respect to the multiplicatively
closed subset Sy = {a € A : 0 ¢ a(U)}. The main result of the paper may be
stated as follows:

THEOREM If A is strictly regular and U is a cozero-set, then the natural algebra
morphism Ay — A(U) is an isomorphism. Moreover, Ay is a strictly regular
symmetric Fréchet algebra with spectrum U.

The isomorphism Ay = A(U) was proved by Muiioz and Ortega ([13]) in the
semisimple case, and by Brooks ([3]) when A is semisimple and U = X.

1. REAL FRECHET ALGEBRAS

DEFINITIONS 1.1. By a topological K-algebra (K = R or C) we shall mean a
K-algebra A endowed with a topology such that A is a topological K-vector space,
the ring multiplication A X A — A is continuous, and A has continuous inverse.
Let A, B be topological K-algebras. The set of all continuous K-algebra morphisms
from A to B is denoted by Homg(A, B). A topological K-algebra A is said to be
Fréchet when it is Hausdorff, complete and its topology is defined by a countable
increasing sequence of K-multiplicative semi-norms.

NOTE 1.2. Let A be a topological K-algebra, let B be a K-algebra and let
f: A — B Dbe a K-algebra morphism. There exists on B the finest topology such
that B is a topological K-algebra and the morphism f is continuous; this topology
is »~id to be the final algebra topology defined on B by f.

If X is a Hausdorff, locally compact and o-compact space, then €(X) is a
Fréchet R-algebra. If V is a ¥ "-manifold, then the algebra € (V) of all real-valued
functions on V of class r, endowed with the topology of uniform convergence on
compact sets of the functions and all of their derivatives up to order r, is a I'réchet
R-algebra (IV.4.2 of [11]).

If I is a closed ideal of a Fréchet K-algebra A, then the quotient algebra A/I,
endowed with the quotient topology, is a Fréchet K-algebra.

DEFINITIONS 1.3. Let A be a topological K-algebra and let X = Homy(A, K).
Each element a € A defines a K-valued mapon X: a: X — K, 2 — «(z) = 2(a).
The topological spectrum (or just spectrum, if no confusion is possible) of A is
the set X endowed with the initial"topology defined by these maps (the Gelfand
topology ). It is denoted by Spec, A and it is a completely regular Hausdorff space.
If a € A, then weset (a)o = {# € X : a(x) = 0}, and the zeroes of an ideal J of Ais
defined to be the closed set (I)g = { € X : a(z) =0 for all a € T}. Anopen set U
in X is said to be a cozero-set if there exists @ € A such that U = {2 € X : «(2) #
0}. A is said to be regular when cozero-sets form a basis for the topology of X.
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By definition, each element a € A defines a continuous K-valued function on X.
So, we obtain the spectral representation morphism A — €(X,K), A is said to be
semisimple when this morphism is injective (i.c., when each element of A may be
identified with a continuous function on the spectrum).

EXAMPLES 1.4. (a) If I is an ideal of a topological K-algebra A, then A/I,
endowed with the final algebra topology defined by the canonical morphism A —
A/I (see 1.2), is a topological K-algebra such that Spec,(A/I) = (I)o. Therefore,
A/I is regular when so is A.

(b) Let V be a € -manifold. Each point z € V defines a continuous morphism
€ (V) = R, f — f(z), and so we get a continuous map 7 : V — Spec, € (V).
It is well-known that ¢ : V' — #(V) is a homeomorphism (differentiable functions
separate points and closed sets), and it may be proved that 7 is surjective. It follows
that V = Spec, €7(V) and € 7(V) is a semisimple regular Fréchet R-algebra.

(c¢) There are important non-semisimple regular Fréchet algebras; the simplest
one: € °°(R)/(z?).

(d) If X is a Hausdorfl, locally compact and o-compact space, then X =
Spec, €(X), so that €(X) is semisimple and regular.

DEFINITION 1.5. A Iréchet R-algebra A is said to be rational if any continuous
R-algebra morphism A — C is real-valued: Homg(A,R) = Homg(4,C) (i.e.,
rational Fréchet algebras are just real Fréchet algebras with no imaginary points).

EXAMPLES 1.6. (a) Finite direct products, localizations (see Definition 2.2),
quotients by closed ideals and completed tensorial products (with the w-topology,
see X.3.1 of [10]) of rational Fréchet algebras are rational Fréchet algebras.

(b) Let A be a real Fréchet algebra. Is it easy to prove that A is rational if and
only if 1 + «? is invertible in A for any @ € A. Hence, ¥ "(V) and € (X) (when the
space X is Hausdorff, locally compact and o-compact) are rational Fréchet algebras.

(c) Let {A;, {fij,t < j},7 € N} be a countable projective system of rational
Fréchet algebras and let A = lim A;. It follows from (b) that A is rational.

DEFINITION 1.7. By a symmetric Fréchet algebra we shall mean a complex
Fréchet algebra B endowed with a continuous involution B = B such that any
continuous C-algebra morphism B — C commutes with the respective involutions.
Morphisms of symmetric Fréchet algebras are defined to Le continuous C-algebra
morphisms commuting with the involutions.

NoTE 1.8. If B is a symmetric Fréchet algebra, then B, = {b € B : b* = b} is
a rational Iréchet algebra such that B = B), @1 B),. Conversely, if A is a Iréchet
R-algebra, then Ac = A@r C = A@ - A, endowed with the direct sum topology,
is a Iréchet C-algebra with a continuous involution, (¢ +7-0)* = a — 7 - b, and
Homg(A,C) = Homg(Ac,C). Hence, if A is rational, then A¢ is symmetric and
Spec, A = Spec, Ac, so that A is regular (resp. semisimple) if and only if so is Ac.
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Symmetric Fréchet algebras have been studied by many authors and there are
well-known results about them (see [12] and [13]). Such results, according to 1.8,
remain valid for rational Fréchet algebras.

2. TOPOLOGICAL LOCALIZATION

Let S be a multiplicatively closed subset of a topological K-algebra A. Ag
will denote the localization (or ring of fractions) of A with respect to S, and
h:A — As, h(a) = a/1, will be the canonical morphism of A into As (see [1]).

EXAMPLES 2.1. (a) Let U be a cozero-set in a topological space X. Then we
have €(U) = €(X)s, where S = {f € B(X) : 0 & f(U)} (see [8]).

(b) Let U be an open set in a € "-manifold V. Then we have €7(U) = €7 (V)s,
where S={f e ¥ (V) : 0¢ [(U)} (see [13]).

(c) Let U be an open set in the spectrum of a semisimple, regular and rational
Fréchet algebra A. If &/(U) denotes the algebra of all real-valued continuous func-
tions on U that locally coincide with functions defined by elements of A, then we

have &/ (U) = As, where S = {a € A : 0 ¢ a(U)} (see [13]).

DEFINITION 2.2. We define the topological localization of A with respect to S
to be the algebra As endowed with the final algebra topology defined by & (see 1.2).

It is clear that Ag is a topological K-algebra characterized by the following
universal property: “If f : A — B is a continuous K-algebra morphism such
that f(s) Is invertible in B for all s € S, then there exists a unique continuous
K-algebra morphism f : As — B such that f = foh”. It is easy to see that
fla/s) = f(a) - [f(s)]~'. As consequence of this universal property, we have:

LEMMA 2.3. If U is a cozero-set in the spectrum of the topological algebra A
and S={a € A : a(a) # 0 for all x € U}, then Spec, As = U.

On the one hand, there exists a “saturated” multiplicatively closed subset Z of A
(i.e: a-b€ Z & a,b € Z) containing S such that As — Az is an isomorphism (and,
by the universal property, an homeomorphism): Z = {¢ € A : a/1 is invertible in
Agr}. Hence, we may assume that any multiplicatively closed subset is saturated.

On the other hand, the canonical map 7 : A x § — As, 7(a,s) = afs is
continuous, so that, if 7. is the final topology defined in As by =, then 7, > 7,
(where 7, denote the topology of the topological K-algebra As). Furthermore, the
morphism h : A — (Ag,7.) is also continuous. Hence, if (As,7.) is a topological
K-algebra, then 7, > 7., and we may conclude that 7. = 7,. We have:

THEOREM 2.4. Let S be a saturated multiplicatively closed subset of a topo-
logical algebra A. If the canonical map 7 : A x S — As has a continuous section
with respect to the topology 7., then (As,7.) is a topological algebra.

As consequence, if T is a topology on Ags such that themapm: Ax S — (As,7)
is continuous and has a continuous section, then T = 7. = 1,.



136 B. REQUEJO

3. STRICTLY REGULAR ALGEBRAS

Let A be a topological K-algebra and let X = Spec, A. If U is an open set in
X, we denote by Ay the localization of A with respect to Sy = {a € A: 0 & a(U)}.
The functor U + Ay is a presheaf of algebras on X whose associated sheaf will be
denoted by A (= the structural sheaf on X), so that we have a natural morphism
Ay — A(U). If 2 € X and A, denotes the localization of A with respect to
S, = {a € A : a(z) # 0}, then the stalk of A at z is just A,. Therefore, if a € A,
the germ a; of a at z is the image of a by the morphism A — A;. The support of
a is defined to be the closed subset |a| = {z € X : a; # 0} (see [6], [7], [10]).

EXAMPLES 3.1. (a) Let X be a completely regular topological space and let
A=%(X). If Uis an open subset of X and Ay = As, S={f€ A : 0¢& f(U)},
then we have a natural morphism Ay — €(U) (an isomorphism when U is cozero)
and we obtain a sheal morphism A — % . Since cozero-sets form a basis for the
topology of X, we have A = %, so that example 2.1.(a) shows that Ay = A(U)
whenever U is a cozero-set.

(b) Let V be a € "-manifold and let A = €7(V). Then A = €7, so that example
2.1.(b) shows that Ay = A(U) for any open set U in V.

(c) Let A be a semisimple, regular and rational Fréchet algebra. Then we have
a sheaf of algebras @/ on Spec, A (see 2.1.(c)). If U is an open set in Spec, A and
s € Sy, then 1/s is a function on U that locally coincides with functions defined by
elements of A ([13], Theorem 18), so that the natural morphism A — &/(U) factors
through Ay and we obtain a sheaf morphism A — &; in fact, it is an isomorphism.
Hence, example 2.1.(c) shows that Ay = A(U) for any cozero-set U in Spec, A.

(d) For a certain class of rational [réchet algebras (containing any quotient of
€ 7(V) by a closed ideal) Ortega proved in [16] that U — Ay is a sheaf on Spec, A.
Therefore, for such algebras, we have Ay = A(U) for any open set U in Spec, A (in
this case, any open subset of Spec, A is a cozero-set).

DEFINITION 3.2. Let A be a topological K-algebra and let X = Spec, A. If
Y C X, then Ny = {a € A : ¢, = 0forall z € Y} is clearly an ideal of A and its
closure Wy = Ny is said to be the Whitney ideal of Y. One says that A is strictly
rzular if we have (Np)g = F for any closed subset F' of X, i.e., if A (as a family
of sections of the sheaf fi) separates points and closed sets.

Any strictly regular algebra is regular. Moreover, if A is semisimple and regular,
then it is readily shown that the germ a, of a at a point z € X is zero if and on:v
if the map ¢ : X — K vanishes on a neighbourhood of x. Hence, for semisimpie
algebras, strict regularity coincides with regularity. € 7(V) and €(X) (when the
space X is Hausdorfl, locally compact and o-compact) are strictly regular Fréchet
algebras.

From the properties of the topological spectrum (1.4.(a) and 2.3), it follows
that localizations and quotients of strictly regular algebras also are strictly regular.
Therefore, any quotient of € 7"(V) by a closed ideal is a strictly regular rational
Iréchet algebra.
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We point out the following properties about strictly regular algebras:

THEOREM 3.3. Let A be a strictly regular rational Fréchet algebra and let
X = Spec, A. Then:
(a) Wx = Nx =0, i.e., the morphism A — /i(X) is injective.
(b) If F and C are closed sets in X such that F C (interior of C), then W C Np.
(c) If F; and F, are disjoint closed sets in X, then Np, + Np, = A.
(d) If Fis a closed set in X, then Wr is contained in any other closed ideal I of A
such that F' = (I)o.

THEOREM 3.4. (Partitions of unity) Let A be a strictly regular rational Fréchet
algebra and let X = Spec, A. If {U:}ien is a countable open covering of X and
{Cin}inen is a double sequence of non-negative real numbers, then there exists a
sequence (a;)ien in A such that the family {|a| : i € N} is locally finite and:

(a) la;] CU; foranyi € N and 2, a; = 1;
(b) Y2, Cin - a; is convergent for all n € N.

Moreover, if ¢ < ¢3 < ... Is a sequence of multiplicative semi-norms defining
the topology of A, then such a sequence (a;);en may be chosen so that the series
Y21 gnlai), 21 Cin - gnlai) (n € N) are convergent.

DEFINITION 3.5. A ring is said to be Gelfand if each prime ideal is contained
in a unique maximal ideal. This condition is equivalent to the existence, for any
two maximal ideals m; # my, of elements a € m; and b & my such that a- b= 0.

THEOREM 3.6. Let A be a rational Fréchet algebra. Then A is strictly regular
if and only if it is regular and Gelfand.

4. LOCALIZATION IN RATIONAL FRECHET ALGEBRAS

THEOREM 4.1. Let A be a strictly regular rational Iréchet algebra. If U is a
cozero-set in Spec, A, then the natural morphism Ay — A(U) is an isomorphism.

COROLLARY 4.2. Let A be a strictly regular rational Fréchet algebra.
(a) A = A(Spec, A).
(-* If A is separable, then the presheaf U — Ay is a sheaf.

A theorem of Brooks (3] follows from 4.2.(a): If A is a semisimple, regular and
rational Iréchet algebra, then A = &/(Spec, A) (see 2.1.(c)). Brooks also proved
in [3] the existence of partitions of unity (see 3.4) for rational regular semisimple
Fréchet algebras.

It is easy to prove that if A is a separable regular real Fréchet algebra, then
every open set in Spec, A is a cozero-set; 4.2.(h) follows from this result.

THEOREM 4.3. Let A be a strictly regular rational Iréchet algebra. If U is a
cozero-set in Spec, A, then Ay is a strictly regular rational Fréchet algebra with
spectrum U.
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Idea of the proof. On the one hand, there exists on Ay a natural topology
making it a strictly regular rational Fréchet algebra. On the other hand, for this
topology the map = : A X Sy — Ay is continuous and has a continuous section.
We conclude by 2.4 and 2.3. 1

COROLLARY 4.4. Let X be a Hausdorff, locally compact and o-compact space.
If U is a cozero-set in X, then the Fréchet algebra €(U) is the topological localiza-
tion of €(X) with respect to S = {f € €(X) : 0 & f(U)}.

COROLLARY 4.5. Let V be a ¢ "-manifold. If U is an open set in V, then
the Fréchet algebra €7 (U) is the topological localization of € 7(V') with respect to

S={fee"(V): 0& f(U)}.
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