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The purpose of this paper is to give a complete classification of the
infinitesimal symmetries of a higher order Lagrangian system (see [9]). Our
classification extends the one obtained by Prince [16,17] for first—order
Lagrangian mechanics (see also Crampin [4], de Ledén and Rodrigues [12],
Crampin, Sarlet and Cantrijn [5], Carifiena, Lopez and Martinez [2]). Symmetries
of higher order Lagrangians systems were also studied by Grigore [6,7,8] but using
a different geometric formulation of Lagrangian mechanics, based in that of
Souriau [20]. We shall use the symplectic formulation of higher order of
Lagrangian mechanics [10,11,5] and the theory of lifts of functions and vector
fields to higher order tangent bundles [14,23].

A Lagrangian of order k is a function L =L(qg,q7,..,q¢) which depends on
the position variables gg and its derivatives up to order & (see [22] for a classical
reference, and [3,18,19,1,13] for some examples). Using higher order tangent
bundles, we may consider L as a function L: TFQ— R We say that L is
regular if the Hessian matrix (82L/6q,‘:6q£) is of maximal rank. We denote by Ej
the energy associated to a regular Lagrangian L of order & Let o be the
Poincaré—Cartan 1-form and w;=-da; the Poincaré—Cartan 2—form. The
intrinsic expressions of E; and «; are the following:
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where dr is the total derivative with respect to the time (see Tulczyjew [21], de
Leén and Rodrigues [11]), 7 : TTQ—— T*Q is the canonical projection, J; is the
canonical higher order almost tangent structure, J. =(J;)", C; is the higher order
Liouville vector field and C, =J,_;C;. The global equation of the motion may be

written on the generalized velocity phase space T2k_1Q as

(1) ixw,=dEy,

In fact, since w; is symplectic, then there exists a unique vector field ¢, on
71 @, which satisfies (1). ¢, will be called the Euler— Lagrange vector field.
Furthermore, ¢ is a 2kth—order differential equation and its solution are just the
solutions of the Euler—Lagrange equations for L (see [10,11]):
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The existence of constants of the motion is useful in order to infegrate the
motion equations (2) (see Olver [15]). Let us recall that a differentiable function
f: TZIHQ—» R is said to be a constant of the motion if £, f=0. In other words,
if y:I—s Tzk'lQ is an integral curve of £, then fo< is a constant function.

If op:Q— @ is a mapping, we denote by 7Ty its natural lift to the
tangent bundle of order r, i.e.,, TTp: T7Q — T7Q. Also, if X is a vector field on
@, we denote by X () its natural lift to 77Q (see [14,23]).

We may distinguish the following three types of symmetries of the
Lagrangian system defined by L:

1. A diffeomorphism ¢ : Tzk_lQ———» T%_IQ is said to be a symmetry of

€ if To(€L) =&,
2. A diffeomorphism ¢: Q@ — @ is said to be a point symmetry of ¢, if
T2k—1
3. A diffeomorphism ¢: Q—— Q is said to be a symmetry of L if Lo T%yp
=L

@ is a symmetry of ;.

We obtain a classification of infinitesimal symmetries in two classes, namely
point—symmetries (vector fields on @) and infinitesimal symmetries not
necessarily point—like (vector fields on Tzk_lQ). The point—symmetries are
classified as follows:

Let X be a vector field on Q. :

1. X is said to be a Lie symmetry if [£,,X(2k-1,2k-1)] =0, or, equivalently,
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its flow consists of point symmetries of ¢;.
X is said to be a Noether symmetry if L,(o-12k-1), is exact (i.e.,

L y(2k-1,2k-1) @, = df ) and X2-1.26-DF; =0,

X is said to be an infinitesimal symmetry of L if X**L =0, or,
equivalently, its flow consists of symmetries of L.

Next, we give the classification of the symmetries not necessarily point—like.
Let X be a vector field on 72%! Q

1.

2.

X is said to be a dynamical symmetry if [fL,/\;] =0, or equivalently, its
flow consists of symmetries of ¢,.
X is said to be a Cartan symmetry if LX~aL is exact, i.e., L,\?aL = df,

and )ZEL =0.

We have obtained the following results which relate the different types of

infinitesimal symmetries:

1
2.
3.
4
5

A Noether symmetry is a Lie symmetry.

An infinitesimal symmetry of L is a Noether symmetry.

A Cartan symmetry is a dynamical symmetry.

If X is a Noether symmetry, then X(2£-1,2k-1) js a Cartan symmetry.
If X is a Lie symmetry, then X(2k-1,2k-1) js 3 dynamical symmetry.

The relationship between infinitesimal symmetries and constants of the

motion is given in the following results:

1.

2.

Let X be an infinitesimal symmetry of L. Then

k .
ag(X(2E-1,26-1)) = gl(_l)f*l_l_[#k"l] (5 (x%rhL))

r= rt | k+r-1
is a constant of the motion.
If X is a Noether symmetry, then
k ' *
- - 11 2k-1 -1 -
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T Ther1

is a constant of the motion.

(Noether theoremand its converse) If X is a Cartan symmetry of ¢,
then f—ay(X) is a constant of the motion. Conversely, if f is a
constant of the motion and Z is a Hamiltonian vector field on T2k_1Q



o o W

o

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

SYMMETRIES FOR HIGHER ORDER LAGRANGIAN SYSTEMS 35

such that izw;, = df, then Z is a Cartan symmetry.
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