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Let P(m, C;ug,v;) denote the following problem:
(1) % = (6m)ey +(C/(z +1)(w™), ((5,8) € S = (0,00)x (0,00), m >0, C>0)
(2) u(z,0)=ug(z) for z € (0,00),
(3) u(0,t) = (t) for te(0,00),
where
ug € L®(0,00), essinfuy>0, wuy =0 ae on (a,00) (a>0),
(4) u; € L®(0,00), essinfu; >0 > 0.

Without loss of generality we can assume that f=1.

In the case C =0 equation (1) becomes the one—dimensional porous
medium equation ([2], [3], [10]). If C=N-—1 (N =2.3,...) then (1) is the radial
version of the N—dimensional porous medium equation w = A(u™) transformed
by introducing the translated spatial variable ([7]). Especially, the problem
P(2,1;0,1) describes the radially symmetrical infiltration into an unsaturated soil,
when the level of water in a cylindrical reservoir is constant ([9]). The question of
interest is the range of infiltrating water.

Under assumptions (4) the problem P(m,C; ug,¥;) has a unique weak
solution v = u(z,t) ([6], [7], [8]). The function u is nonnegative, bounded and
continuous on S, and u satisfies an appropiate integral identity instead of (1).
However u is the classical solution for those points (z,t) € S at which u(z,t) > 0.
Moreover, if we define ((t)=sup{ze€(0,00):u(z,t)>0} (¢>0), then
0<((t)<oo for t>0 and ((¢) is a Lipschitz continuous nondecreasing
function. The curve z = ((t) is called the interface or the free boundary of
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P(m, C) Uy, ul)‘
We know that in the case of P(m,0;0,1) the interface has the form

(5) ¢(t) = co(m)tt2
where the constant co(m) > 0 depens on m ([1), [5], [11], [12], [16], [18], [19]).

If Cel0,1] then the interface of P(m,C;up, u;) satisfies the following
asymptotic result ([17]): '

(6) log((t)~%logt as t— 00.

In this paper we apply some integral equations methods ([4], [13], [14], [15])
to construct a so—called weak subsolution of P(m,C;ug,4;) for C>1 and use
this subsolution to prove the following theorem

THEOREM. Let C > 1. If ( is the interface of the problem P(m,C;ug,u;)
then

(7) () = [(C-1)(C+1)m(m+1)Tt+1]1/(C+)
for t >0.

In the authors’ opinion the estimate (7) seems to be useful for further
considerations concerning the large—time behavior of £.
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