Algebras of Real Analytic Functions; Homomorphisms and Bounding Sets

P. BISTRÖM², J.A. JARAMILLO¹ AND M. LINDSTRÖM²

Dpto. de Análisis Matemático, Universidad Complutense, 28040 Madrid, Spain
 Dept. of Mathematics, Åbo Akademi, SF-20500 Åbo, Finland

AMS Subject Class. (1991): 46E25

Received July 30, 1993

In this paper we are interested in subsets of a real Banach space on which different classes of functions are bounded. If A(E) be an algebra on a Banach space E, a subset B of E is said to be A-bounding if $\sup_{x \in B} |f(x)| < \infty$ for all $f \in A(E)$. In the literature, bounding sets have been extensively studied with respect to the classes of continuous and holomorphic functions, see [9,7]. In [1] it is shown that if a subset B of a real Banach space E satisfies that each C^{∞} -function on E is bounded on B, then B is relatively compact. We shall be especially interested here in algebras A(E) between $\mathcal{P}(E)$, the continuous polynomials on E, and A(E), the real analytic functions on E. The close interplay between the homomorphisms on A(E) and the A-bounding sets will play an important role in this article.

In what follows A(E) will be an algebra of continuous real functions on a real Banach space E that contains the dual E'. Futhermore, we require the algebra A(E) to have the additional property that given two Banach spaces E and F and a continuous linear map $T: E \longrightarrow F$, then $f \circ T \in A(E)$ whenever $f \in A(F)$.

Let $\operatorname{Hom} A(E)$ denote the set of all homomorphisms on A(E). We say that A(E) is $\operatorname{single-set}$ evaluating if for each $\phi \in \operatorname{Hom} A(E)$ and every $f \in A(E)$ we have $\phi(f) \in f(E)$. Obviously, if A(E) is single-set evaluating, then for each $\phi \in \operatorname{Hom} A(E)$ and finite set $\{f_1, \ldots, f_n\}$ in A(E), there is a point $a \in E$ such that $\phi(f_i) = f_i(a)$ for all $i = 1, \ldots, n$. It is also clear that every inverse-closed algebra A(E), i.e., $1/f \in A(E)$ whenever $f \in A(E)$ and $f(x) \neq 0$ for all $x \in E$, is single-set evaluating. An algebra A(E) is sequentially evaluating if for each

¹ Research partially supported by DGICYT grant PB90-0044 (Spain)

 $\phi \in \operatorname{Hom} A(E)$ and each sequence (f_n) in A(E) there is a point $a \in E$ with $\phi(f_n) = f_n(a)$ for all n.

By $\mathcal{P}_f(E)$ we mean the algebra of all continuous polynomials of finite type on E; that is, the algebra generated by E'. Let $\mathcal{AE}(E)$ denote the set of all functions $f: E \to \mathbb{R}$ such that there exists a sequence $(p_n) \in \mathcal{P}(^nE)$ with $f(x) = \sum_{n \in \mathbb{N}} p_n(x)$ for all $x \in E$. Then $\mathcal{AE}(E)$ is an algebra with $\mathcal{P}(E) \subset \mathcal{AE}(E) \subset \mathcal{A}(E)$, where the last inclusion follows from [2].

By $\mathcal{R}A(E)$ we denote the smallest inverse-closed algebra which contains A(E). Hence every element in $\mathcal{R}A(E)$ is of the form f/g, where $f,g\in A(E)$ and $g(x)\neq 0$ for all $x\in E$. For the case of $A(E)=\mathcal{P}(E)$ we shall denote $\mathcal{R}\mathcal{P}(E)=\mathcal{R}(E)$, the algebra of rational functions on E. It is not difficult to check that for each Banach space E the algebra $\mathcal{RAE}(E)$ is a proper subalgebra of A(E).

1. BOUNDING SETS

Since we always require the algebra A(E) to contain the dual E' and A(E) is contained in C(E), every relatively compact set is A-bounding and every A-bounding set is bounded. Let $E_{A(E)}$ be the set E endowed with the weakest topology making all $f \in A(E)$ continuous. One of the motivations for studying A-bounding sets relies on the fact that if the A-bounding sets in E are relatively compact, then E and $E_{A(E)}$ have the same convergent sequences; that is, $x_n \longrightarrow x$ in E if and only if $f(x_n) \longrightarrow f(x)$ for all $f \in A(E)$.

Using the concept of interchangeable double limit property, we obtain:

THEOREM 1. Let E be a Banach space. Then every \mathcal{R} -bounding subset of E is relatively $\sigma(E, E')$ -compact.

COROLLARY 2. Let E be a Banach space. If E has the Dunford-Pettis property, then the \mathcal{R} -bounding and the relatively $\sigma(E,E')$ -compact subsets of E coincide.

Examples of Banach spaces with the Dunford-Pettis property are C(K) for any compact K and $L^1(\mu)$. This class is also closed under formation of preduals, if they exist, and hence the important Banach spaces $c_0(\Gamma)$, $\ell_1(\Gamma)$ and $\ell_{\infty}(\Gamma)$ all have this property.

Since the Schur property implies the Dunford-Pettis property, it follows from Corollary 2 that for a Banach space E with the Schur-property, every

 \mathcal{R} —bounding set is relatively compact in E. In our next theorem we show that this is also true if E is a super-reflexive Banach space.

By [8], $E = \operatorname{Hom} \mathcal{R}(E)$ for E separable. Therefore every \mathcal{R} -bounding set in E is relatively compact in $E_{\mathcal{P}(E)}$. Since $E_{\mathcal{P}(E)}$ is angelic, each \mathcal{R} -bounding set in E is relatively sequentially compact in $E_{\mathcal{P}(E)}$. If we, in addition, assume that E is a Λ -space [4] (i.e., the weak-polynomial convergence for sequences implies the norm convergence, since a sequence (x_n) in E is weak-polynomial convergent to x if and only if $p(x_n - x) \longrightarrow 0$ for every $p \in \mathcal{P}(E)$), then we may state

PROPOSITION 3. In separable Λ -spaces the \mathcal{R} -bounding sets are relatively compact.

Recall from [4] that the separable space ℓ_p is a Λ -space for $1 \leq p < \infty$.

In [5] a Banach space E is defined to be in the class \mathcal{W}_p $(1 when for each bounded sequence <math>(x_n)$ in E there exist a $x \in E$ and a subsequence (x_{n_k}) such that $\sum_{k=1}^{\infty} |l(x_{n_k}-x)|^p < \infty$ for all $l \in E'$. Using a convenient characterization of super-reflexivity, Castillo-Sánchez proved in [5] that every super-reflexive Banach space is in the class \mathcal{W}_p for some p $(1 . Recall that a Banach space is super-reflexive if and only if its dual is super-reflexive. The spaces <math>L^p(\mu)$ are super-reflexive for $1 and any measure <math>\mu$.

THEOREM 4. Assume that E' is in the class W_p for some p $(1 (e.g. that E is super-reflexive). Then every <math>\mathcal{R}$ -bounding set is relatively compact in E.

A subset $B \subset E$ is said to be limited, if each $\sigma(E',E)$ -null sequence (l_n) converges to zero uniformly on B. This concept translates to the language of bounding sets. Indeed, if $W^*(E) = \{ \sum_{k=1}^{\infty} (l_n)^n : (l_n) \longrightarrow 0 \text{ in } \sigma(E',E) \}$, then obviously $B \subset E$ is limited if and only if B is W^* -bounding. Furthermore, since $W^*(E) \subset \mathcal{AE}(E) \subset \mathcal{A}(E)$ we have the relation

 \mathcal{A} -bounding $\Rightarrow \mathcal{AE}$ -bounding \Rightarrow limited.

The limited and the relatively compact sets in E coincide when E is isomorphic to a subspace of C(K), where K is a compact, sequentially compact Hausdorff space [6]. All WCG spaces have this property as well as every weak Asplund space. Hence, for large classes of Banach spaces E every limited set is \mathcal{R} -bounding. Note also that Bourgain and Diestel [3] proved that in Banach spaces with no copy of ℓ_1 limited sets are relatively weakly compact.

In [12] Schlumprecht has constructed a complex Banach space E which contains a subset that is limited in E but not bounding with respect to holomorphic functions on E. Using this example we obtain a Banach space E for which

limited
$$\neq \mathcal{AE}$$
-bounding.

The original Tsirelson space T' and c_0 provide examples of \mathcal{R} -bounding subsets that are not limited. Hence in general

$$\mathcal{R}$$
-bounding \Rightarrow limited.

On the other hand, by Phillips' lemma, $B_{c_0} \subset \ell_{\infty}$ is a limited set that is not \mathcal{R} -bounding. Thus also

limited
$$\neq \mathcal{R}$$
-bounding.

By means of the next theorem, when investigating the bounding sets in Banach spaces, one can restrict to one of the simplest sets in ℓ_{ϖ} .

THEOREM 5. Let A(E) be an algebra on a Banach space E that contains the algebra $\mathcal{R}(E)$. Then each A-bounding set is relatively compact in E if there exists some function in $A(\ell_{\varpi})$ that is unbounded on the set of unit vectors in ℓ_{ϖ} .

Theorem 5 is directly applicable to the algebra $C^{\varpi}(E)$ of all C^{ϖ} -functions on E in the usual Fréchet sense. Indeed, the function $f: \ell_{\varpi} \longrightarrow \mathbb{R}$ which assigns an arbitrary point $x = (x_1, x_2, \dots) \in \ell_{\varpi}$ the value

$$f(x) = \eta(x_1) + 2\mu(x_1)\eta(x_2) + 3\mu(x_1)\mu(x_2)\eta(x_3) + \dots \dots + k\mu(x_1)\mu(x_2)\dots\mu(x_{k-1})\eta(x_k) + \dots,$$

where η and μ are non-negative C^{∞} -functions on $\mathbb R$ such that

$$\eta(t) = \left\{ egin{array}{ll} 1 \;, & ext{for } t=1 \ 0 \;, & ext{for } t \leqslant 3/4 \end{array}
ight. \quad ext{and} \quad \mu(t) = \left\{ egin{array}{ll} 1 \;, & ext{for } t=0 \ 0 \;, & ext{for } t \geqslant 1/4 \;, \end{array}
ight.$$

is locally finite and thus an element in $C^{\omega}(\ell_{\omega})$. By construction, $f(e_n) = n$ for all n. Therefore we have

COROLLARY 6. In every Banach space the C^{∞} -bounding sets are relatively compact.

With use of complexification and the deep results for holomorphically bounding sets in the complex Banach space ℓ_{ϖ} due to Dineen and Josefson [7], we study the bounding sets for the algebras $\mathcal{AE}(\ell_{\varpi})$ and $\mathcal{RAE}(\ell_{\varpi})$.

PROPOSITION 7. Every function $f = \sum_{n=0}^{\infty} p_n \in \mathcal{AE}(\ell_{\infty})$ converges uniformly on each bounded subset of c_0 . Especially, every bounded set in c_0 is an \mathcal{AE} -bounding subset of ℓ_{∞} .

By means of the Phillips' lemma, there is, as stated before, a limited set in ℓ_{∞} that is not \mathcal{R} -bounding. With Proposition 7 in hand, this result is sharpened to the subclass of \mathcal{AE} -bounding sets; that is,

 \mathcal{AE} -bounding $\Rightarrow \mathcal{R}$ -bounding.

On the othed hand we have

COROLLARY 8. Every weakly compact set in c_0 is RAE-bounding in ℓ_{∞} , in particular, the unit vectors $\{e_n : n \in \mathbb{N}\}$ form an RAE-bounding set in ℓ_{∞} .

Remark. The set B_{c_0} cannot be \mathcal{RAE} -bounding in ℓ_{∞} , since it isn't even \mathcal{R} -bounding.

2. EVALUATING PROPERTIES OF HOMOMORPHISMS

The principal interest in this section is to investigate the evaluating properties of the homomorphisms, such as the single-set and sequentially evaluating properties as well as their complete reduction to point evaluations, defined on the algebras $\mathcal{P}_f(E)$, $\mathcal{RP}_f(E)$, $\mathcal{P}(E)$, $\mathcal{R}(E)$, $\mathcal{RE}(E)$, $\mathcal{RAE}(E)$ and $\mathcal{A}(E)$ for various classes of Banach spaces E.

Although the algebra $\mathcal{AE}(\mathbb{R})$ is not inverse-closed, it is single-set evaluating. In fact, every homomorphism on $\mathcal{AE}(\mathbb{R})$ is even a point evaluation. Indeed, let $\phi \in \operatorname{Hom} \mathcal{AE}(\mathbb{R})$ and take $f \in \mathcal{AE}(\mathbb{R})$. For the function $p \in \mathcal{AE}(\mathbb{R})$, where p(x) = x for all $x\mathbb{R}$, set $\alpha = \phi(p)$. Expand f in a Taylor series at α . Then $f(x) = f(\alpha) + (x - \alpha)g(x)$, where $g \in \mathcal{AE}(\mathbb{R})$. Hence $\phi(f) = f(\alpha) + 0 \cdot \phi(g) = f(\alpha)$.

In the next example we consider the algebra $\mathcal{AE}_b(E)$ of all functions $f = \Sigma_{n \in \mathbb{N}} p_n \ \mathcal{AE}(E)$ such that $\|p_n\|^{1/n} \longrightarrow 0$ as $n \longrightarrow \infty$. By taking into account the Josefson-Nissenzweig theorem [6], we observe that $\mathcal{AE}(E) = \mathcal{AE}_b(E)$ precisely when E is finite dimensional. The complex analog of $\mathcal{AE}_b(E)$ is the algebra of all holomorphic functions of bounded type.

EXAMPLE. Let E be a reflexive Banach space such that $\mathcal{P}_f(^nE)$ is dense in $\mathcal{P}(^nE)$ with respect to the norm topology for every n. Then every homomorphism on $\mathcal{AE}_b(E)$ is a point evaluation, and $\mathcal{AE}_b(E)$ endowed with the topology

generated by the norms $\{\|\cdot\|_k: k\in\mathbb{N}\}$ where $\|f\|_k = \sum_{n=0}^\infty \|p_n\| k^n$, is a Fréchet algebra.

The assumptions on E in the example above are satisfied e.g. when E is the original Tsirelson space T' or a finite dimensional space.

In the next results some properties of sequential evaluation of homomorphisms are obtained.

PROPOSITION 9. Let $\phi \in \operatorname{Hom} \mathcal{R}(E)$ and let (p_n) be a sequence of polynomials on a Banach space E such that their degree is uniformly bounded. Then there is a point $a \in E$ such that $\phi(p_n) = p_n(a)$ for all n.

THEOREM 10. Let A(E) be a single-set evaluating algebra containing $\mathcal{AE}_b(E)$. Let $\phi \in \operatorname{Hom} A(E)$, let $f \in A(E)$ and let (f_n) be a sequence in $\mathcal{AE}(E)$. Then there is a point $a \in E$ such that $\phi(f) = f(a)$, $\phi(f_n) = f_n(a)$ for all n. In particular, the restriction $\phi|_{\mathcal{AE}(E)}$ is sequentially $\mathcal{AE}_b(E)$ -continuous.

COROLLARY 11. For every Banach space E the inverse-closed algebra $\mathcal{RAE}(E)$ is sequentially evaluating.

Next we give conditions under which each homomorphism on $\mathcal{RAE}(E)$ is a point evaluation.

PROPOSITION 12. Let (E_n) be a sequence of Banach spaces such that each E_n admits a continuous linear injection into $\ell_q(\Gamma)$ for some $q < \infty$ and some set Γ of non-measurable cardinality. If E equals $(\bigoplus_n E_n)_{\ell_p}$ or $(\bigoplus_n E_n)_{\ell_0}$, then $E = \operatorname{Hom} \mathcal{RAE}(E)$.

Examples of Banach spaces admitting a continuous linear injection into some $\ell_q(\Gamma)$ are all super-reflexive spaces [10] as well as those with weak*-separable duals.

THEOREM 13. Let E be a weakly Lindelöf Banach space not containing a copy of ℓ_1 with the Dunford-Pettis property. Then

$$E = \operatorname{Hom} \mathcal{R}(E) = \operatorname{Hom} \mathcal{RAE}(E)$$
.

Examples of spaces satisfying the assumptions in Theorem 13 are $c_0(\Gamma)$ and C(K) for a scattered Corson compact K [11].

In contrast, we now give some negative results.

PROPOSITION 14. The algebra $A\mathcal{E}(\ell_{\infty})$ is not single-set evaluating.

If E is finite dimensional, then $\mathcal{P}_f(E)=\mathcal{P}(E)$ by which $\mathcal{P}(E)$ is sequentially evaluating. Since E' contains a point separating sequence, every homomorphism on $\mathcal{P}(E)$ is a point evaluation. If E is infinite dimensional the situation is entirely different.

PROPOSITION 15. Let E be an infinite dimensional Banach space. Then $\mathcal{P}(E)$ is not a single-set evaluating algebra.

PROPOSITION 16. Let E be a non-reflexive Banach space. Then neither $\mathcal{P}_f(E)$ nor the inverse-closed algebra $\mathcal{RP}_f(E)$ are sequentially evaluating.

REFERENCES

- 1.
- BISTRÖM, P. AND JARAMILLO, J.A., C^{m} -bounding sets and compactness, preprint. BOCHNAK, J. AND SICIAK, J., Analytic functions in topological vector spaces, 2. Studia Math. 39 (1971), 77-112.
- BOURGAIN, J. AND DIESTEL, J., Limited operators and strict cosingularity, Math. 3. Nachr. 119 (1984), 55-58
- CARNE, T.K., COLE, B. AND GAMELIN, T.W., A uniform algebra of analytic 4. functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659.
- CASTILLO, J.M.F. AND SANCHEZ, F., Weakly-p-compact, p-Banach-Saks and 5. super-reflexive Banach spaces, to appear in J. Math. Anal. Appl.
- 6. DIESTEL, J., "Sequences and Series in Banach Spaces", Graduate Text in Math. n. 92, Springer, 1984.
- 7. DINEEN, S., "Complex Analysis in Locally Convex Spaces", North Holland, 1981.
- GARRIDO, M.I., GÓMEZ, J. AND JARAMILLO, J.A., Homomorphisms on function 8. algebras, Extracta Mathematicae 7 (1992), 46-52.
- 9. JARCHOW, H., "Locally Convex Spaces", Teubner, 1981.
- JOHN, K., TORUNCZYK, H. AND ZIZLER, V., Uniformly smooth partitions of 10. unity on superreflexive Banach spaces, Studia Math. 70 (1981), 129-137.
- NEGREPONTIS, S., Banach spaces and topology, in "Handbook of Set Theoretic 11. Topology" (ed.: K. Kunen and J.E. Vaughan), North. Holland, 1984.
- 12. SCHLUMPRECHT, TH., A limited set that is not bounding, Proc. R. Ir. Acad. 90 A (1990), 125-129.