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In this paper we are interested in subsets of a real Banach space on which
different classes of functions are bounded. If A(E) be an algebra on a Banach
space E, a subset B of E is said to be A—bounding if sup, g |f(z)| < oo for all
feA(E). In the literature, bounding sets have been extensively studied with
respect to the classes of continuous and holomorphic functions, see [9, 7]. In [1] it
is shown that if a subset B of a real Banach space E satisfies that each
C®—function on E is bounded on B, then B is relatively compact. We shall be
especially interested here in algebras A(E) between P(E), the continuous
polynomials on E, and A(E), the real analytic functions on E. The close
interplay between the homomorphisms on A(E) and the A—bounding sets will
play an important role in this article.

In what follows A(E) will be an algebra of continuous real functions on a
real Banach space E that contains the dual E’. Futhermore, we require the
algebra A(E) to have the additional property that given two Banach spaces E
and F and a continuous linear map T:E— F, then foT€ A(E) whenever
feA(F).

Let Hom A(E) denote the set of all homomorphisms on A(E). We say that
A(E) is single—set evaluating if for each ¢ € Hom A(F) and every fe A(E) we
have ¢(f)€f(E). Obviously, if A(F) is single—set evaluating, then for each
$€ Hom A(E) and finite set {f;,...,fp} in A(E), there is a point a€ E such
that ¢(f;)=f;(a) for all i=1,...,n. It is also clear that every inverse—closed
algebra A(E), i.e., 1/fe A(E) whenever fe A(E) and f(z) #0 for all z€E, is
single—set evaluating. An algebra A(E) is sequentially evaluating if for each
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$p€ HomA(E) and each sequence (f,) in A(E) there is a point a€E with
¢(fn) =fn(a) forall n.

By Pf(E) we mean the algebra of all continuous polynomials of finite type
on E; that is, the algebra generated by E’. Let A£(E) denote the set of all
functions f: E— R such that there exists a sequence (p,)€ P("E) with f(z)=
3, nPn(z) for all ze E. Then A£(E) is an algebra with P(E)c AE(E) c A(E),
where the last inclusion follows from [2].

By RA(E) we denote the smallest inverse—closed algebra which contains
A(E). Hence every element in ZA(E) is of the form f/g, where f,g€ A(F) and
g(z) #0 for all zeE. For the case of A(E)=P(E) we shall denote
RP(E) =R(F), the algebra of rational functions on E. It is not difficult to check
that for each Banach space E the algebra ZAE(E) is a proper subalgebra of A(E).

1. BOUNDING SETS

Since we always require the algebra A(E) to contain the dual E’ and A(F)
is contained in C(F), every relatively compact set is A—bounding and every
A—bounding set is bounded. Let E4g) be the set E endowed with the weakest
topology making all fe A(E) continuous. One of the motivations for studying
A-bounding sets relies on the fact that if the A—bounding sets in E are
relatively compact, then E and E,g) have the same convergent sequences; that
is, z, — z in E if and only if f(z,)— f(z) for all fe A(E).

Using the concept of interchangeable double limit property, we obtain:

THEOREM 1. Let E be a Banach space. Then every B—bounding subset of E
is relatively o(E, E’)—compact.

COROLLARY 2. Let E be a Banach space. If E has the Dunford— Pettis
property, then the B—bounding and the relatively o(E,E’)—compact subsets of E
coincide.

Examples of Banach spaces with the Dunford—Pettis property are C(K) for
any compact K and Lt (). This class is also closed under formation of preduals,
if they exist, and hence the important Banach spaces ¢o(I'), £;(I') and {4 (T') all
have this property.

Since the Schur property implies the Dunford—Pettis property, it follows
from Corollary 2 that for a Banach space £ with the Schur—property, every
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R-bounding set is relatively compact in E. In our next theorem we show that
this is also true if E is a super—reflexive Banach space.

By [8], E=HomZ(F) for E separable. Therefore every Z—bounding set in

E is relatively compact in E,p( ) Since E.’J (E)

E is relatively sequentially compact in E’P (E)’ If we, in addition, assume that E

is angelic, each Z—bounding set in

is a A—space [4] (i.e., the weak—polynomial convergence for sequences implies the
norm convergence, since a sequence (z,) in E is weak—polynomial convergent to
z if and only if p(z, —z) — 0 for every pe P(E)), then we may state

PROPOSITION 3. In separable A—spaces the R—bounding sets are relatively
compact.

Recall from [4] that the separable space £, is a A—space for 1 < p < 0.

In [5] a Banach space E is defined to be in the class ¥, (1 < p <oo) when
for each bounded sequence (z,) in E there exist a z€ E and a subsequence (z,;)
such that 3 |l(zn, —z)|P<oo for all leE’. Using a convenient
characterization of super—reflexivity, Castillo—Sinchez proved in [5] that every
super—reflexive Banach space is in the class ¥, for some p (1 < p <o00). Recall
that a Banach space is super—reflexive if and only if its dual is super—reflexive.
The spaces L? (u) are super—reflexive for 1 < p < oo and any measure 4.

THEOREM 4. Assume that E’ is in the class W, for some p (1<p <o0) (e.g.
that E 1is super—reflezive). Then every R—bounding set is relatively compact in E.

A subset BCE is said to be lmited, if each o(E’, E)—null sequence ({,)
converges to zero uniformly on B. This concept translates to the language of
bounding sets. Indeed, if W*(E)={%,_ (I,)": (I,) — 0in o(E",E)}, then
obviously BCF is limited if and only if B is W*-bounding. Furthermore, since
W*(E)c A£(E) c A(E) we have the relation

A-bounding = AEL-bounding = limited.

The limited and the relatively compact sets in E coincide when E is isomorphic
to a subspace of C(K), where K is a compact, sequentially compact Hausdorff
space [6]. All WCG spaces have this property as well as every weak Asplund
space. Hence, for large classes of Banach spaces E every limited set is
Z—bounding. Note also that Bourgain and Diestel [3] proved that in Banach
spaces with no copy of £, limited sets are relatively weakly compact.
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In [12] Schlumprecht has constructed a complex Banach space E which
contains a subset that is limited in E but not bounding with respect to
‘holomorphic functions on E. Using this example we obtain a Banach space E for
which

limited # A£-bounding.

The original Tsirelson space T” and c( provide examples of Z—bounding

subsets that are not limited. Hence in general

Z-bounding # limited.

On the other hand, by Phillips’ lemma, B, C { is a limited set that is not
Z—bounding. Thus also
limited # Z%—bounding.
By means of the next theorem, when investigating the bounding sets in
Banach spaces, one can restrict to one of the simplest sets in £.

THEOREM 5. Let A(E) be an algebra on a Banach space E that contains the
algebra R(E). Then each A—bounding set is relatively compact in E if there ezists
some function in A({y) that is unbounded on the set of unit vectors in £ .

Theorem 5 is directly applicable to the algebra C®(E) of all C”—functions
on E in the usual Fréchet sense. Indeed, the function f: £;— R which assigns an
arbitrary point £= (z,,25,... ) € {5 the value

f(2) = n(z1) + 2p(21)n(22) + 3u(z1)u(za)n(zs) + .-
oot kp(zy)u(zs) - plze-)n(ee) + -,

where 7 and 4 are non—negative C®—functions on R such that

_J1, fort=1 _J1, fort=0
"(t)‘{o, fort<3/4 2 “(t)‘{o, fort>1/4,

is locally finite and thus an element in C”({y). By construction, f(e,)=n for

all n. Therefore we have

COROLLARY 6. In every Banach space the C®—bounding sets are relatively
compact.

With use of complexification and the deep results for holomorphically
bounding sets in the complex Banach space £, due to Dineen and Josefson [7], we
study the bounding sets for the algebras AE(¢y) and RAE({y).



116 BISTROM, JARAMILLO AND LINDSTROM

PROPOSITION 7. Every function f=3._ p, € A£({y) converges uniformly
on each bounded subset of cy. Especially, every bounded set in cg is an
AE —bounding subset of £ .

By means of the Phillips’ lemma, there is, as stated before, a limited set in
£, that is not Z—bounding. With Proposition 7 in hand, this result is sharpened
to the subclass of AE —bounding sets; that is,

A£ —bounding # 7R-bounding.
On the othed hand we have

COROLLARY 8. Ewery weakly compact set in cq is RAE—bounding in £y, in
particular, the unit vectors {e, : n € N} form an RAE —bounding set in L.

Remark. The set B, cannot be ZAL—bounding in £, since it isn’t even
Z-bounding.

2. EVALUATING PROPERTIES OF HOMOMORPHISMS

The principal interest in this section is to investigate the evaluating
properties of the homomorphisms, such as the single—set and sequentially
evaluating properties as well as their complete reduction to point evaluations,
defined on the algebras P;(E), RP;(E), P(E), R(E), AE(E), RAE(E) and
A(FE) for various classes of Banach spaces E.

Although the algebra AE(R) is not inverse—closed, it is single—set
evaluating. In fact, every homomorphism on A£(R) is even a point evaluation.
Indeed, let ¢ € Hom A£(R) and take fe AE(R). For the function p € AE(R), where
p(z) =z for all zR, set a= ¢(p). Expand fin a Taylor series at a. Then f(z) =
f(@) + (2 - a)g(z), where ge AE(R). Hence ¢(f) = f(@) + 0-4(g) = f(a).

In the next example we consider the algebra AE£,(E) of all functions
f=3%, nPn AE(E) such that |p,| Y™, 0 as n— oo. By taking into account
the Josefson—Nissenzweig theorem [6], we observe that AEL(E) = AEy(F)
precisely when E is finite dimensional. The complex analog of A£,(E) is the
algebra of all holomorphic functions of bounded type.

~ EXAMPLE. Let E be a reflexive Banach space such that P;("E) is dense in
P("E) with respect to the norm topology for every n. Then every homomorphism
on A£,(E) is a point evaluation, and AE,(E) endowed with the topology
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generated by the norms {||-|x:keN} where [flx =2, lp.lk", is a
Fréchet algebra.

The assumptions on E in the example above are satisfied e.g. when E is the
original Tsirelson space T” or a finite dimensional space.

In the next results some properties of sequential evaluation of
homomorphisms are obtained.

PROPOSITION 9. Let ¢ € HomR(E) and let (p,) be a sequence of
polynomials on a Banach space E such that their degree is uniformly bounded.
Then there is a point a € E such that ¢(p,) = pp(a) for alln.

THEOREM 10. Let A(E) be a single—set evaluating algebra containing
AEy(E). Let e HomA(E), let fe A(E) and let (f,) be a sequence in AE(E).
Then there is a point a€ E such that ¢(f) = f(a), ¢(fn) = fu(a) for all n. In
particular, the restriction ¢ | € (B) is sequentially AEy (E) — continuous.

COROLLARY 11. For every Banach space E the inverse—closed algebra
RAE(E) is sequentially evaluating.

Next we give conditions under which each homomorphism on ZAE(E) is a
point evaluation.

PROPOSITION 12. Let (E,) be a sequence of Banach spaces such that each
E, admits a continuous linear injection into £ (L) for some ¢ < co and some set '
of mon—measurable cardinality. If E equals (®,E,), or (8, E,) co’ then
E =HomRAE(E). P

Examples of Banach spaces admitting a continuous linear injection into
some {,(I') are all super—reflexive spaces [10] as well as those with
weak * —separable duals.

THEOREM 13. Let F be a weakly Lindelf Banach space not containing a
copy of £, with the Dunford— Pettis property. Then

E = HomZ%(E) = Hom ZAE(E) .

Examples of spaces satisfying the assumptions in Theorem 13 are ¢((I') and
C(K) for a scattered Corson compact K [11).
In contrast, we now give some negative results.

PROPOSITION 14. The algebra AE(Ly) is not single—set evaluating.
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If E is finite dimensional, then P;(E)=P(E) by which P(E) is
sequentially evaluating. Since E’ contains a point separating sequence, every
homomorphism on P(E) is a point evaluation. If E is infinite dimensional the
situation is entirely different.

PROPOSITION 15. Let E be an infinite dimensional Banach space. Then
P(E) is not a single—set evaluating algebra.

PROPOSITION 16. Let E be a non—reflezive Banach space. Then neither
P (E) nor the inverse—closed algebra BPs(E) are sequentially evaluating.
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