Compact Polynomials Between Banach Spaces

RAQUEL GONZALO 1 AND JESÚS ANGEL JARAMILLO 1

Dpto. de Análisis Matemático, Univ. Complutense, 28040 Madrid, Spain

AMS Subject Class. (1991): 46B20, 46G20

Received May 27, 1993

The classical Pitt theorem [25] asserts that every bounded linear operator from ℓ_p into ℓ_q is compact whenever q < p. This result was extended by Pelczynski [23] who showed in particular that every N-homogeneous polynomial from ℓ_p into ℓ_q is compact if Nq < p. Our aim in this note is giving conditions on Banach spaces X and Y in order to obtain that every polynomial of a given degree N from X into Y is compact.

We recall that, if X and Y are (real or complex) Banach spaces, an N-homogeneous polynomial $P:X\longrightarrow Y$ is a map of the form P(x)=T(x,...,x), where $T:X\times\cdots\times X\longrightarrow Y$ is a continuous linear map. We shall say that P is compact if P maps the unit ball of X into a relatively compact set of Y, and P is weakly sequentially continuous if P maps weakly convergent sequences in X into norm convergent sequences in Y. These classes of polynomials have been extensively studied, both from the point of view of Banach space theory and also in infinite-dimensional holomorphy, especially in connection with compact holomorphic mappings (cf. [1,2,3,5,12,15,23,24,26] and references therein). It follows from [5] that if X does not contain a copy of ℓ_1 then every weakly sequentially continuous N-homogeneous polynomial $P:X\longrightarrow Y$ is compact, and also that if X contains a copy of ℓ_1 and Y is infinite dimensional then for each $N\geqslant 2$ there exists a non-compact N-homogeneous polynomial $P:X\longrightarrow Y$. Therefore we shall be mainly concerned with weak sequential continuity of polynomials.

We will show that polynomials preserve weak summability of sequences, and we shall deduce that every N-homogeneous polynomial $P: X \longrightarrow Y$ is weakly sequentially continuous if $N \cdot u(Y) < l(X)$, where l(X) and u(Y) are indexes defined in relation with certain properties of weak summability (the existence of

¹ Research partially supported by DGICYT grant PB 90-0044

upper and lower estimates) of sequences in X and Y.

1. LOWER AND UPPER ESTIMATES

Let X be a Banach space over \mathbb{K} (where $\mathbb{K} = \mathbb{R}$ or \mathbb{C}) and let $1 \leq p, q \leq \infty$. We shall say that a sequence $\{x_n\}$ in X has an upper p-estimate (respectively, a lower q-estimate) if there exists a constant C > 0 such that for every $n \in \mathbb{N}$ and every $a_1, \ldots, a_n \in \mathbb{K}$,

$$\left\| \sum_{i=1}^{n} a_i x_i \right\| \leqslant C \left(\sum_{i=1}^{n} |a_i|^p \right)^{1/p}$$

[respectively,
$$\left\| \sum_{i=1}^{n} a_i x_i \right\| \ge C \left[\sum_{i=1}^{n} |a_i|^q \right]^{1/q}$$
,

where the right-hand side means $\sup_i |a_i|$ if $p = \infty$ (or $q = \infty$). In particular, a normalized basic sequence $\{x_n\}$ has an upper ∞ -estimate if, and only if, it is equivalent to the unit vector basis of c_0 .

A sequence $\{x_n\}$ in X is said to be weakly p-summable if for every $x^* \in X^*$ we have that $\{x^*(x_n)\} \in \ell_p$ (or $\{x^*(x_n)\} \in c_0$ when $p = \infty$). It is worth noting that a sequence has an upper p-estimate if, and only if, it is weakly p^* -summable, where p^* is such that $\frac{1}{p} + \frac{1}{p^*} = 1$ (see for instance [7]).

REMARK 1.1. Following Pelczynski [23], a sequence $\{x_n\}$ in X is said to be $\tau_{1/p}$ -null if there exists a constant C>0 such that for every $n\in\mathbb{N}$, every $\zeta_1,\ldots,\zeta_n\in\mathbb{K}$ with $|\zeta_j|=1$ and every $k_1<\ldots< k_n$, we have

$$\left\| \sum_{i=1}^{n} \zeta_i x_{k_i} \right\| \leqslant C \, n^{1/p}.$$

It is easy to see that the $\tau_{1/p}$ -null sequences coincide with the hereditarily p-Banach-Saks sequences in the sense of [8]; that is, sequences $\{x_n\}$ for which there exists a constant C>0 such that for every $n \in \mathbb{N}$ and every $k_1 < \ldots < k_n$, we have

$$\left\| \sum_{i=1}^n x_{k_i} \right\| \leqslant C \, n^{1/p}.$$

It is shown in [8] that if a sequence is hereditarily p-Banach-Saks then it has an upper r-estimate for every r < p.

Recall that a sequence $\{x_n\}$ in a Banach space is called seminormalized if

there exist constants k, K > 0 so that $k \leqslant \|x_n\| \leqslant K$ for each n. According to [21], a Banach space X is said to have property S_p (for some $1 \leqslant p \leqslant \infty$) if every weakly null seminormalized basic sequence in X has a subsequence with an upper p-estimate. In a similar way, we shall say that X has property T_q (for some $1 < q \leqslant \infty$) if every weakly null seminormalized basic sequence in X has a subsequence with a lower q-estimate. It is plain that a Schur space has properties S_p and T_q for every $1 \leqslant p \leqslant \infty$ and every $1 < q \leqslant \infty$. So we shall say that a Banach space has property T_1 if, and only if, it is a Schur space. On the other hand, every Banach space has properties S_1 and T_q . We also note that properties S_p and T_q are inherited by closed subspaces.

The lower and upper indexes of a Banach space X are now defined as:

$$l(X) = \sup\{p \geqslant 1 : X \text{ has property } S_p\} \in [1, \infty]$$

 $u(X) = \inf\{q \geqslant 1 : X \text{ has property } T_q\} \in [1, \infty].$

Our next result will show some duality between properties S_p and T_q . In [20] the result is obtained for $p=\infty$.

PROPOSITION 1.2. Let X be a Banach space without any copy of ℓ_1 and let $1 \leq p \leq \infty$. If X has property S_p then X^* has property T_p^* , where $\frac{1}{p} + \frac{1}{p^*} = 1$.

The converse of Proposition 1.2 is not true. See [20] for the case $p=\infty$. In the case that 1 , a subspace <math>X of $L_p[0,1]$ is constructed in [18] such that every weakly-null seminormalized basic sequence in X has a subsequence that is equivalent to the unit vector basis of ℓ_p , but the equivalence constant cannot be chosen uniformly for all sequences in question. Therefore X has properties S_p and T_p but it follows from [21] that X^* has not property S_{p^*} .

EXAMPLES AND REMARKS 1.3. 1) If X is not a Schur space, then $l(X) \le u(X)$.

- 2) For $1 , <math>\ell_p$ has properties S_p and T_q , and $l(\ell_p) = u(\ell_p) = p$. More generally, if M is an Orlicz function satisfying the Δ_2 -condition at 0 [22], the Orlicz sequence space ℓ_M satisfies that $l(\ell_M) = \alpha_M$, $u(\ell_M) = \beta_M$ (see [19]), where α_M and β_M are the Boyd indexes of M.
- 3) For $1 , <math>L_p[0,1]$ has properties $S_{\min(2,p)}$ and $T_{\max(2,p)}$, and $l(L_p[0,1]) = \min(2,p)$, $u(L_p[0,1]) = \max(2,p)$. On the other hand, $l(L_1[0,1]) = 1$ and $u(L_1[0,1]) = 2$.
 - 4) The James space J and the dual J^* have properties S_2 and T_2 .

- 5) It follows from the results of [17] and [8] that if X is superreflexive then $1 < l(X) \le u(X) < \infty$. On the other hand, if $1 , the space <math>X = (\bigoplus_k \ell_1^k)_{\ell_p}$ satisfies l(X) = u(X) = p, although X is not superreflexive.
- 6) Property S_{ϖ} is equivalent to the hereditary Dunford Pettis property [7]. For the original Tsirelson space T^* we have $l(T^*) = u(T^*) = \infty$ [10], although T^* has not property S_{ϖ} . For the dual space T, l(T) = u(T) = 1.
 - 7) If $1 \le p < \infty$, and X has property S_{∞} then so does $\ell_p(X)$ [9].
 - 8) If X has property S_{∞} then so does $c_0(X)$ [7,9].

Next we will relate properties S_p and T_q with type and cotype. First note that, in the case of a Banach space with unconditional basis, type p implies property S_p ([11],[21]) and cotype q implies property T_q . Using the theory of spreading models and some ideas along the lines of the results of Farmer and Johnson in [13], we obtain the following:

THEOREM 1.4. Let $\{x_n\}$ be a weakly null seminormalized basic sequence in a Banach space X and let 1 .

- 1) If $\{x_n\}$ admits a spreading model whose fundamental sequence has an upper p-estimate, then there exists a subsequence of $\{x_n\}$ with an upper r-estimate for every r < p.
- 2) If $\{x_n\}$ admits a spreading model whose fundamental sequence has a lower p-estimate, then there exists a subsequence of $\{x_n\}$ with a lower r-estimate for every r > p.

And, as a consequence, we also have:

COROLLARY 1.5. Let X be a Banach space.

- 1) If X has type $p \in (1,2]$ then X has property S_r for every r < p.
- 2) If X has cotype $q \in [2,\infty)$ then X has property T_r for every r > q.

REMARK 1.6. Let $p(X) = \sup\{p: X \text{ has type } p\}$ and $q(X) = \inf\{q: X \text{ has cotype } q\}$. From Corollary 1.5 we have that $p(X) \leqslant \min\{2, l(X)\}$ and $q(X) \geqslant \max\{2, u(X)\}$. Now consider $X = (\bigoplus_k \ell_4^k)_{\ell_2}$ and $X^* = (\bigoplus_k \ell_{4/3}^k)_{\ell_2}$. Then q(X) = 4, $p(X^*) = 4/3$, $l(X) = l(X^*) = 2$. Therefore in general we have that $\min\{2, l(X)\}$ is different from p(X) and $\max\{2, u(X)\}$ is different from q(X).

2. POLYNOMIALS AGAINST SEQUENCES WITH UPPER ESTIMATES

It is shown in [6] (see also [23]) that every N-homogeneous polynomial takes $\tau_{1/p}$ -null sequences into $\tau_{N/p}$ -null sequences if N < p. We will see that an analogous result holds for sequences with an upper p-estimate. The case $p = \infty$ is considered in [14].

THEOREM 2.1. Let $P: X \longrightarrow Y$ be an N-homogeneous polynomial. Then

- 1) If N , P takes sequences with an upper p-estimate in X into sequences with an upper <math>(p/N)-estimate in Y.
- 2) P takes sequences with an upper ∞ -estimate in X into sequences with an upper ∞ -estimate in Y.

Theorem 2.1 extends the following result of Aron, Globevnik and Zalduendo:

THEOREM 2.2. ([4],[27]) Let $X = \ell_p$ (1 < $p < \infty$) or c_0 , let $\{e_n\}$ be the usual basis of X, and let P be a scalar valued N-homogeneous polynomial on X.

- 1) If $X = \ell_p$ and N < p, then $\{P(e_n)\} \in \ell_{(p/N)}^*$.
- 2) If $X = c_0$, then $\{P(e_n)\} \in \ell_1$.

REMARKS 2.3. We note that the special case of c_0 and ℓ_p are determining, since in fact Theorem 2.1 can also be derived in a simple way from Theorem 2.2 using the following Lemma.

LEMMA 2.4. Let $\{y_n\}$ be a sequence in a Banach space Y. Let $N \in \mathbb{N}$ and $N \leq p < \infty$. Then the following are equivalent:

- a) $\{y_n\}$ is weakly $(p/N)^*$ -summable.
- b) There exists a bounded linear operator $T: \ell_{p/N} \longrightarrow Y$ such that $T(e_n) = y_n$, where $\{e_n\}$ is the unit vector basis of $\ell_{p/N}$.
- c) There exists an N-homogeneous polynomial $P: \ell_p \longrightarrow Y$ such that $P(e_n) = y_n$, where $\{e_n\}$ is the unit vector basis of ℓ_p .

Now we can easily deduce the following Theorem, which is essentially a reformulation of [23].

THEOREM 2.5. Let X and Y be Banach spaces.

- 1) If $N \cdot u(Y) < \ell(X)$, then every N-homogeneous polynomial from any subspace of X into Y is weakly sequentially continuous.
- 2) If X has property S_{∞} and Y does not contain copy of c_0 , then every homogeneous polynomial from any subspace of X into Y is weakly sequentially

continuous.

Next Corollary deals with reflexivity of the space $\mathcal{P}(^{N}X,Y)$ of all N-homogeneous polynomials from X into Y. For the original Tsirelson space T^* it was proved in [2] that $\mathcal{P}(^{N}T^*,\ell_p)$ is reflexive for all N. From Corollary 2.6 we obtain that $\mathcal{P}(^{N}X,Y)$ is reflexive for all N in the case that X is, for example, a quotient of T^* and Y is superreflexive.

COROLLARY 2.6. Let X and Y be reflexive spaces, and suppose that every N-homogeneous polynomial from X into Y is weakly sequentially continuous (e.g., if $N \cdot u(Y) < \ell(X)$). Then $\mathcal{P}(^N X, Y)$ is reflexive.

We do not know wether the condition in Theorem 2.5 (1) is sharp. We have nevertheless a partial answer.

PROPOSITION 2.7. Let X, Y be Banach spaces, and suppose that X has a weakly null, normalized unconditional basis.

- 1) If N > u(X), then there exists an N-homogeneous polynomial $P: X \longrightarrow Y$ that is not weakly sequentially continuous.
- 2) If Y is not Schur and $N \cdot \ell(Y) > u(X)$, then there exists an N-homogeneous polynomial $P: X \longrightarrow Y$ that is not weakly sequentially continuous.

REFERENCES

- ALENCAR, R., ARON, R. AND DINEEN, S., A reflexive space of holomorphic functions in infinite dimensions, Proc. AMS 90 (1984), 407-411.
- 2. ALENCAR, R., ARON, R. AND FRICKE, G., Tensor products of Tsirelson's space, Ill. J. Math. 31 (1987), 17-23.
- 3. ARON, R., Compact polynomials and compact differentiable mappings between Banach spaces, in "Séminaire P. Lelong (Analyse)", Lecture Notes in Math. 524, Springer-Verlag, 213-222.
- 4. ARON, R. AND GLOVEBNIK, J., Analytic functions on c₀, Rev. Mat. Univ. Complutense 2, No. suplementario (1989), 27-33.
- ARON, R., HERVÉS, C. AND VALDIVÍA, M., Weakly continuous mappings on Banach spaces, Jour. Funct. Anal. 52 (1983), 189-204.
- 6. ARON, R., LACRUZ, M., RYAN, R. AND TONGE, A., The generalized Rademacher functions, preprint.
- CEMBRANOS, P., The hereditary Dunford Pettis property in C(K,E), Ill. J. Math. 31(3) (1987), 365-373.
- 8. CASTILLO, J. AND SÁNCHEZ, F., Weakly p-compact, p-Banach-Saks, and superreflexive spaces, to appear in J. Math. Anal. Appl.
- CASTILLO, J. AND SÁNCHEZ, F., Upper l_p-estimates in vector sequence spaces with some applications, Math. Proc. Cam. Phil. Soc. 113 (1993), 329-334.
- CASTILLO, J. AND SÁNCHEZ, F., Remarks on the basic properties of Tsirelson's space, to appear in Note di Mat.

- 11. CASTILLO, J. AND SÁNCHEZ, F., Remarks on the range of a vector measure, to appear in Glasgow Math. J.
- FARMER, J., Polynomial reflexivity in Banach spaces, preprint. 12.
- 13. FARMER, J. AND JOHNSON, W.B., Polynomial Schur and polynomial Dunford Pettis properties, Contemporary Math. 144 (1993), 951-105.
- 14. GONZÁLEZ, M. AND GUTIÉRREZ, J., Unconditionally converging polynomials on Banach spaces, preprint.
- 15. GUTIÉRREZ, J., "Espacios de funciones continuas y diferenciables en dimensión infinita", Thesis, Univ. Complutense, Madrid, 1990.
- 16. GROTHENDIECK, A., Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzsky Rogers, Bol. Soc. Math. Sao Paulo 8 (1956), 81-110.
- JAMES, R.C., Superreflexive spaces with basis, Pacific J. Math. 41 (1972), 409-419.
- JOHNSON, W.B. AND ODELL, E., Subspaces of L_p which embed into ℓ_p , 18. Compositio Math. 28 (1974), 37-49.
- 19. KNAUST, H., Orlicz sequence spaces of Banach-Saks type, Arch. Math. 59 (1992),
- 20. KNAUST, H. AND ODELL, E., On co-sequences in Banach spaces, Israel J. of Math. 67(2)(1989), 153-169.
- KNAUST, H. AND ODELL, E., Weakly null sequences with upper \(\ell_p\)-estimates, in 21. Lecture Notes in Math. 1470, Springer-Verlag, 85-107.
- 22. LINDENSTRAUSS, J. AND TZAFRIRI, L., "Classical Banach Spaces, I", Springer-Verlag, Berlín, 1977.
- 23. PELCZYNSKI, A., A property of multilinear operations, Studia Math. 16 (1957-58), 173-182.
- PELCZYNSKI, A., On weakly compact polynomial operators on B-spaces with 24.Dunford-Pettis property, Bull. Acad. Pol. Sci. XI(6) (1963), 371-378.
- 25.
- PITT, H.R., A note on bilinear forms, J. London Math. 11 (1936), 174-180 RYAN, R., "Applications of Topological Tensor Products to Infinite Dimensional 26. Holomorphy", Ph. D. Thesis, Trinity College, Dublin, 1980.
- 27. ZALDUENDO, I., An estimate for multilinear forms on ℓ_p spaces, preprint.