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1, In [1] we generalize the process of prolongation of a Dani
ell-Bourbaki integral. We consider a vector lattice B of real-valued
functions on a set X# ¢, under the pointwise defined operations and re-
lations #,tg + = ,5,V, A. The treatment presented here differs in that
we are concerned with a nonnegative linear functionall on B , which in
general is not continuous in any sense. The triple (X,B,I) is called a
Loomis system.,

The initial elemental integral I is extended to a class L(B,I)
of I-summable functions by the previous introduction of the appropriate
oscillation integrals, and then we consider the I-integrable functions,
which form the widest possible class of those to which the functional I
may be prolonged. The obtained results have ap outstanding paralelism
with the well known Daniell process. Also, in [2] we study the measura-

bility with respect to a Loamis system.

2. We assume given (X,Q,u) where Q is a ring of subsets of X
and u a nonnegative finitely additive measure on Q.
A subset C of X is called u-null if for each ¢ €R+, there is

AEeQ with CcAe and u(AE) ¢ € . Q, denotes the class of all u-null

sets. Now, we define { :{(A-AI)UAg; Aeq, AZ,AZQQO} . @ is a ring,
and p can be extended to & by the formula u((A—Al) UA2):u(A); the defi-~
nition given to u is independent of the particular decomposition which
is used, andp is a finitely additive measure on ﬁu

n A function feRX is called stmple if it can be expresed as
f:i§1 a, XAi , where 4; s, 2=z1,...,n , mutually disjoint, and where
a; «R. The function f will called I -simple function whenever g; #0 im-
lies “(Ai) L+®, L2100, Similuarly, in the case where A; ¢ we con-
sider the u-simple function (which coincides with the definition given

by Dunford-Schwartz, (4] ). 5=5(X,q,u) denotes the class of all =sim—
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ple functions, and B=B(X,0,u) the class of all Iy-simple functions.,
Clearly ScB. If f is a simple function, then the finite real number
i‘_fl a;u(A7) is called the integral of f, and is denoted by L (f) if
f€B, and ff du if f€5 . Then, the triple (X,B,I,) is a bounded stonian
Loomis system, hence we can be consider our extension of [1] or comple-
tion of B with respect to Iu' Thus, feI—-'rX is said to be Iu—swnmable func
tion if fe€Ly:=L(B,Iy) =B, in (1]

We study now the relationship between the I} -summable and u-inte
grable functions, which latter, for real valued functions, were presen-
ted essentially to Loomis [7] , for Banach space-valued functions, were
been introduced to Dunford-Schwartz [4] , and bit more generally to Giinz
ler [s],[6].

3, The main results obtained can be summarized as follows.
a. The class of all the Riemann-integrable functions of [6] and
{71, i.e. Pi(u) = {feEX; to each € >0, there are h,k €S with hsfsk
and f(k-h) du ce} , is contained in L(B, I)

b. If Q is an algebra (then { is so), every u-integrable funmction
in accordance with Dunford-Schwartz definition., i.e. f& L(u) iff there
exists a sequence {gn}n€1V
quence and with g —» f in p-measure, then feL(B,I,) and I, (f) :ff du.

of u-simple function which is a u-Cauchy se-

c. In (3] we find that if f is an abstractRiemann-integrable func
tion , i.e., feRJ(u) iz {feli’x; for each g€ S, g/\feRi(u) and the set
(fg du; g€S, 0£gsfl is bounded} ,(see [6]), then f may be expressed

as the sum of a J,~summable function and a p-null function.

Note that for any Banach space K, any algebra ( from X and any
finitely additive measure u:Q — [0, +={, Rl (u)of [6] coincides with the
class L(u) of all p-integrable functions of [4].

d. The result c. can be shaspened as follows (Glinzler, private
conmunication): If Q is a semiring from X , u:Q —»[0 +w[_ is finitely
additive, and UCX with U= A UA U... with Anen and XA]U..,LA -)XU
p-locally as n »+» (see (5] ), then for any fel? (n) with f=0 outside
U one has f€L(B, I,).

For o¢-additive y , U= X is possible if Xz A4
An€Q + P.€., X:Rn, Q :{halfopen I
u =

1UA2U .. with

lx...xI I, of form [a,b[cR},
n - .
W= Lebesgue-measure ; so R (uL/n R)cIL(S, f duL

Since for any u always X =U is possible if X€Q, with
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L(u)::Rz(u,R), one gets as special case: any u-integrable function

of [4] belong to L(B,Ih) s for arbitrary u.
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