FINITELY ADDITIVE INTEGRATION

M. Díaz Carrillo, P. Bobillo Guerrero

Dpto. de Análisis Matemático, Fac. de Ciencias
Univ. de Granada. 18071-Granada

AMS class.: 28A10, 28A20, 28A25.

1. In [1] we generalize the process of prolongation of a Daniell-Bourbaki integral. We consider a vector lattice B of real-valued functions on a set $X \neq \emptyset$, under the pointwise defined operations and relations $+,t_\circ$, =, \leq , \vee , \wedge . The treatment presented here differs in that we are concerned with a nonnegative linear functional I on B, which in general is not continuous in any sense. The triple (X,B,I) is called a Loomis system.

The initial elemental integral I is extended to a class L(B,I) of I-summable functions by the previous introduction of the appropriate oscillation integrals, and then we consider the I-integrable functions, which form the widest possible class of those to which the functional I may be prolonged. The obtained results have an outstanding parallelism with the well known Daniell process. Also, in [2] we study the measurability with respect to a Logmis system.

2. We assume given (X, Ω , μ) where Ω is a ring of subsets of X and μ a nonnegative finitely additive measure on Ω .

A subset C of X is called $\mu-null$ if for each $\varepsilon\in R^+$, there is $A_\varepsilon\in\Omega$ with $C\subset A_\varepsilon$ and $\mu(A_\varepsilon) \not\subset \varepsilon$. Ω_0 denotes the class of all μ -null sets. Now, we define $\overline{\Omega} = \{(A-A_1) \cup A_2; A\in\Omega, A_1, A_2\in\Omega_0\}$. $\overline{\Omega}$ is a ring, and μ can be extended to $\overline{\Omega}$ by the formula $\mu((A-A_1) \cup A_2) = \mu(A)$; the definition given to μ is independent of the particular decomposition which is used, and μ is a finitely additive measure on $\overline{\Omega}$.

A function $f \in R^X$ is called simple if it can be expressed as $f = \sum_{i=1}^{K} a_i \times_{A_i}$, where $A_i \in \overline{\Omega}$, $i = 1, \ldots, n$, mutually disjoint, and where $a_i \in R$. The function f will called I—simple function whenever $a_i \neq 0$ imlies $\mu(A_i) \leftarrow +\infty$, $i = 1, \ldots, n$. Similarly, in the case where $A_i \in \Omega$ we consider the μ -simple function (which coincides with the definition given by Dunford-Schwartz, [4]). $S = S(X, \Omega, \mu)$ denotes the class of all μ -sim-

ple functions, and $B=B(X,\overline{\Omega},\mu)$ the class of all I_{Ψ} -simple functions. Clearly $S\subset B$. If f is a simple function, then the finite real number $i\sum_{i=1}^{n}\alpha_{i}\mu(A_{i})$ is called the integral of f, and is denoted by $I_{\mu}(f)$ if $f\in B$, and $\int f \ d\mu$ if $f\in S$. Then, the triple (X,B,I_{μ}) is a bounded stonian Loomis system, hence we can be consider our extension of [1] or completion of B with respect to I_{μ} . Thus, $f\in \overline{R}^{X}$ is said to be I_{μ} -summable function if $f\in L_{\mu}:=L(B,I_{\mu})=B_{0}$ in [1].

We study now the relationship between the I_{μ} -summable and μ -integrable functions, which latter, for real valued functions, were presented essentially to Loomis [7], for Banach space-valued functions, were been introduced to Dunford-Schwartz [4], and bit more generally to Günzler [5],[6].

- 3. The main results obtained can be summarized as follows.
- a. The class of all the *Riemann-integrable functions* of [6] and [7], i.e. $R_e^1(\mu) := \{f \in \mathbb{R}^K; \text{ to each } \epsilon > 0, \text{ there are } h, k \in S \text{ with } h \leq f \leq k \text{ and } \int (k-h) \ d\mu \ \zeta \ \epsilon \}$, is contained in $L(B, I_{\mu})$.
- b. If Ω is an algebra (then $\overline{\Omega}$ is so), every μ -integrable function in accordance with Dunford-Schwartz definition, i.e. $f \in L(\mu)$ iff there exists a sequence $\{g_n\}_{n \in \mathbb{N}}$ of μ -simple function which is a μ -Cauchy sequence and with $g_n \to f$ in μ -measure, then $f \in L(B, \mathcal{I}_{\mathbf{L}})$ and $\mathcal{I}_{\mathbf{L}}(f) = \int f \ d\mu$.
- c. In [3] we find that if f is an abstract-Riemann-integrable function , i.e., $f \in \mathbb{R}^1(\mu) := \{f \in \mathbb{R}^X : \text{ for each } g \in S, g \land f \in \mathbb{R}^1(\mu) \text{ and the set } \{\int g \ d\mu; \ g \in S, \ 0 \le g \le f\} \text{ is bounded} \}$, (see [6]), then f may be expressed as the sum of a $I_{\mathcal{U}}$ -summable function and a μ -null function.

Note that for any Banach space K, any algebra Ω from X and any finitely additive measure $\mu:\Omega \to [0, +\infty[, R^1(\mu))]$ [6] coincides with the class $L(\mu)$ of all μ -integrable functions of [4].

d. The result c. can be shaspened as follows (Günzler, private conmunication): If Ω is a semiring from X, $\mu:\Omega \to [\mathcal{O}]$, $+\infty$ [is finitely additive, and $U \subset X$ with $U = A_1 \cup A_2 \cup \ldots$ with $A_n \in \Omega$ and $X_{A_1} \cup \ldots \cup A_n \to X_U$ μ -locally as $n \to +\infty$ (see [5]), then for any $f \in R^1(\mu)$ with f = 0 outside U one has $f \in L(B, I_1)$.

For σ -additive μ , U=X is possible if $X=A_1\cup A_2\cup\ldots$ with $A_n\in\Omega$, p.e., $X=R^n$, Ω ={halfopen $I_1\times\ldots\times I_n$; I_k of form [a,b[cR], $\mu=\mu_L^n$ = Lebesgue-measure ; so $R^1(\mu_L^n/\Omega,R)\subset L(S,\int_{-\infty}^\infty d\mu_L^n)$.

Since for any μ always X=U is possible if $X \in \Omega$, with

 $L(\mu)=R^{1}(\mu,R)$, one gets as special case: any μ -integrable function of [4] belong to $L(B,I_{\Pi})$, for arbitrary μ .

REFERENCES

- 1. BOBILLO GUERRERO, P. and M. DIAZ CARRILLO. Summable and integrable functions with respect to any Loomis system. To appear in Arch.

 Math., (1987).
- 2. ----- Fonctions fortement-mesurables et mesurables par rapport à un système de Loomis. Bull. Soc Roy. Sci. Liège, 55,4, pp. 467-71, (1986).
- 3. ----- On the summability of certain ν -integrable functions. Preprint Univ. de Granada, (1987).
- 4. DUNFORD N. and J.T. SCHWARTZ. Linear operators, part I, New York, 1963.
- 5. GÜNZLER, H.. Linear functional which are integrals. Rend. Sem. Mat. Fis. Milano, XLIII, pp. 167-76, (1974)
- 6. ---- Integration. Bibliographisches Institut. Wissenschaftsverlag. Zürich. 1985.
- 7. LOOMIS, L.H. Linear functional and content Amer. J. Math., 76, pp. 168-182, (1954).