MAXIMAL ELEMENTS AND SYMMETRY OF THE SEMIGROUP OF VALUES OF A CURVE SINGULARITY WITH SEVERAL BRANCHES

Félix Delgado de la Mata

Dpto. de Algebra. Facultad de Ciencias Prado de la Magdalena, S/N. 47005-VALLADOLID (SPAIN)

In this paper C is a reduced, algebroid, plane curve and C_1, C_2, \ldots, C_d its branches. If v_i is the valuation associated with C_i denote by $\underline{v} \colon D(\mathfrak{G}) \longrightarrow \mathbb{Z}_d$ the mapping given by $\underline{v}(h) = (v_1(h), \ldots, v_d(h))$. (D(\mathfrak{G}) is the set of nonzero divisors in the local ring \mathfrak{G} of C and $\mathbb{Z}_+ = \left\{ \ n \in \mathbb{Z} \ / \ n \geq 0 \right\}$). The semigroup of values of C, S(C) or S, is defined to be the additive subsemigroup $Im\underline{v} = 0$ of \mathbb{Z}_+^d . One has that C and C' are equisingular if and only if, for a suitable ordering on the set $\left\{1,\ldots,d\right\}$ the semigroups S(C) and S(C') are the same (see [w]).

Let $I = \{1, 2, \ldots, d\}$, $d \ge 2$, $J \subset I$, $J \ne \emptyset$, $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}_+^d = \mathbb{Z}_+^I$ and consider the following sets $\Delta_J(\alpha) = \{\beta = (\beta_1, \ldots, \beta_d) \in \mathbb{S} \mid \beta_i = \alpha_i \quad \forall i \in J, \ \beta_k > \alpha_k \quad \forall k \notin J \}$ $\Delta(\alpha) = \bigcup_{i=1}^d \Delta_{\{i\}}(\alpha). \text{ Denote by pr}_J \text{ the natural projection } \mathbb{Z}_+^I \longrightarrow \mathbb{Z}_+^J$ and $S_J = \text{pr}_J S$. Finally " \le " will denote the ordering on \mathbb{Z}_+^d given by $\alpha \le \beta \iff \text{pr}_i \alpha \le \text{pr}_j \beta$ for all $i = 1, \ldots, d$

Definition.— $\alpha \in S$ will be said to be <u>maximal</u> of S if $\Delta(\alpha) = \emptyset$. If, moreover, $\Delta_J(\alpha) = \emptyset$ $\forall J \subset I$, $J \not= I$, α will be said to be an <u>absolute maximal</u>. If α is maximal and $\Delta_J(\alpha) \not= \emptyset$, $\forall J \subset I$ with $\#J \geq 2$, α will be said to be <u>relative maximal</u>.

Theorem (generation).— Let $R = \{\alpha^1, \ldots, \alpha^n\}$ be the set of relative maximal elements of S. Let $\beta \in \mathbf{Z}_+^d$ such that if #J = d-1 then $\text{pr}_J(\beta) \in S_J$. Then $\beta \in S$ if and only if $\beta \notin \Delta(\alpha^i)$ for $i = 1, \ldots, n$.

Notas: a) Above result is proved in [D-1] in an arithmetical way for the semigroups of (not necessarily plane) algebroid curves. b) R is a

finite set because of the existence of conductor in S. c) Since S_J is the semigroup of the curve $C_J = \bigcup_{i \in J} C_i$ the theorem provides a inductive process describing the semigroup S.

<u>Definition</u>.— The Apery basis, $A_{\gamma}(S)$, of S with respect to $\gamma \in S$ is defined to be the set of elements $\alpha \in S$ such that $\alpha - \gamma \not\in S$. We will call principal elements of S with respect to $\gamma \in S$ the elements in the set

$$N_{\gamma}(S) = \{ \alpha \in S / \Delta(\alpha) \subset A_{\gamma}(S) \}.$$

Each maximal element is a principal one (relative to any Y) and if α is principal (relative to Y) then $\text{pr}_J(\alpha)$ is principal with respect to $\text{pr}_J(\gamma) + \xi^J$, where $\xi^J = \text{pr}_J(\underbrace{v}_{i \not k} \cup \underbrace{f}_i))$, f_i being an equation for the i-th. branch.

Now, let $Q \in \mathbb{Z}_+^d$ be the element given by $\text{pr}_i Q = c_i + \sum_{j=1}^d I_{ij} - 1, \text{ where } I_{ij} \text{ is the intersection multiplicity }$

of C_i and C_j , c_i is the conductor of S_i . If $\alpha \in N_{\gamma}(S)$ one has that $\alpha \leq Q+\gamma$ and if α is maximal then $\alpha \leq Q$. The main result states as follows.

Theorem (Symmetry of maximal elements)

- A) Q is a relative maximal of S. Moreover Q + (1, ..., 1) is the conductor of the semigroup S.
- B) Let $\alpha \in S$. Then α is maximal if and only if $Q \alpha \in S$. Moreover if α , $\beta \in S$ and $\alpha + \beta = Q$ one has that α is absolute maximal if and only if β is relative maximal.
- C) If $\gamma, \nu \in S$, then $\nu \in N_{\gamma}(S)$ if and only if $Q + \gamma \nu \in S$.

The statement A) implies that Q + Y is the maximum of the principal elements relative to Y.

Now if α , $\beta \in \mathbb{Z}^d_+$ then one has:

If $\alpha+\beta=Q$, then α is maximal if and only if β is maximal.

If $\alpha + \beta = Q + \gamma$, then $\alpha \in N_{\gamma}(S)$ if and only if $\beta \in N_{\gamma}(S)$

For d = 1, these properties are well known (see [K]): If $\alpha+\beta=c-1$ then $\alpha \in S \iff \beta \notin S$ and if $\alpha+\beta=c+\gamma-1$ then $\alpha \in A_{\gamma}(S) \iff \beta \in A_{\gamma}(S)$, where c is the conductor of S.

In the proof of the Theorem ([D-2]) we will use induction on the number d ≥ 2 of branches of C. If d = 2 this Theorem is essen

tially proved in [G].

The proof of the Theorem is based on the theorem of generation and the properties given before the statement. The proof proceeds by induction in such a way that both B) and C) appear within the same inductive process, where the joining of B) and C) is suggested by the fact " α is a maximal implies $\text{pr}_{\perp}(\alpha) \in N_{\perp}(S_{\perp})$ ".

From above theorems it follows that the absolute maximal elements of the semigroup S are enough for determining S if one knows the projected semigroups, $pr_J(S)$, where #J=d-1. In fact, absolute and relative maximals are equivalent data bacause the symmetry Theorem.

REFERENCES

- [D-1] Delgado, F.: Semigrupo de valores de singularidades de curvas reducidas. To appear in Actas VII Congreso do G.M.E.L. Coimbra, 1985.
- [D-2] Delgado, F.: A Symmetry property for the maximal elements of the semigroup of a curve singularity with several branches.

 Preprint. Valladolid 1985.
- [G] Garcia, A.: Semigroups associated to singular points of plane curves. J. Regne. Angew. Math. 336 (1982), 165-184.
- [κ] Kunz E.: The value-semigroup of one dimensional Gorenstein Ring. Proc. Amer. Math. Soc. 25 (1970).
- [W] Waldi, R.: Wertehalbgruppe und singularitat einer algebraishen kurve. Dissertation. Regensburg 1972.

^(*) A.M.S. Subject Clasification (1980): 14-B-05, 14-H-20, 32-B-30.