DESINGULARIZATION OF THREE -DIMENSIONAL VECTOR FIELDS

F. Cano

Departamento de Geometría
Facultad de Ciencias. 47005-Valladolid. SPAIN

Here we present some results obtained in [6, 7, 8, 9]. If F is a singular foliation over a variety X, dim X = 2, making a finite number of quadratic blowing-ups of X, one obtains a (saturated) foliation F^{*}given at each singular point by a vector field D = a $\theta/\theta x$ + b $\theta/\theta y$ whose linear part has an eigenvalue $\lambda \neq 0$ and the other root μ of the characteristic polynomial verifies $\mu/\lambda \notin \mathbb{Q}_+$. There are two problems: first to show that if $\nu = \min (\nu(a), \nu(b))$ then it decreases after a finite number of blowing-ups if $\nu \geq 2$, second to obtain the above special feature if $\nu = 1$; [6,7] deal with the first problem and [8,9] with the second one in the case dim X = 3.

1. Logarithmic viewpoint. An unidimensional distribution D over X is an invertible O_X -submodule of the tangent sheaf Θ_X . It defines an unidimensional singular foliation F_D over X. D is multiplicatively irreducible iff $D = \alpha(D)$, where $\alpha(D)$ is the double orthogonal. The saturation of F_D is sat $(F_D) = F_{\alpha(D)}$. P is a singular point of D iff $\nu_P(D) \geq 1$, $\nu_P(D) = \text{order of } D_P$ as a submodule of $\Theta_{X,P}$. The behaviour of $\nu_P(D)$ is not very good under quadratic blowing-ups. Moreover it is an important question to study the leaves of F_D through a singular point ([11], [2], [3] if dim X = 2). The strict transforms of these leaves are the leaves of F^* not contained in the exceptioal divisor E. This allows us to introduce E. D is adapted to E iff $D \subset \Theta_X[E] = \text{dual sheaf of the logarithmic forms } \Omega_X[\log E]$. D is m.i. and adapted to E iff $D = \alpha_E(D)$, where $\alpha_E(D)$ is obtained as above. The adapted order $\nu(D, E, P)$ is the order of D_P as a submodule of $\Theta_{X,P}[E]$. One has

Theorem 1. ([6]. I. (3.1.4); [4]. II. 1.3.3). If $\pi: X' \to X$ is a quadratic blowing-up and (X', E', D') is the strict transform of (X, E, D) (E' = π^{-1} (E \cup {center})), then $\nu(D', E', P') \leq \nu(D, E, \pi(P'))$ for each P'. The blowing-ups to be considered have center Y with normal crossings

with E in order that E' would be a normal crossings divisor. If Y verifies that $\nu(D', E', P') \leq \nu(D, E, \pi(P'))$ and dim Y \leq dim X-2, then Y is weakly permissible.

- 2. Reduction games. Let us begin with (X, E, D, P) with $\nu(D,E,P)=r\geq 2$. We are player A. Choose a weakly permissible center Y at P and let $\pi: X' \longrightarrow X$ be the corresponding blowing-up. Assume that the player B chooses a point P' over P. If $\nu(D', E', P') \leq 1$, we have won. Otherwise the game begins at the status (X', E', D', P'). [6] is devoted to the proof of
- Theorem 2. ([6] I. 4.2.9). If dim X = 3, then there is a strategy for the player A in order to win in a finite number of steps.
- 3. Global results. [7] is devoted to prove that for a special kind of singularities one can reduce the adapted order in a global manner. Let $J^{\Gamma}(f) = i deal$ of the strict tangent space of $cl^{\Gamma}(f)$ ($v(f) \geq r$, $cl^{\Gamma}(f) = i mage in <math>m_P^{\Gamma} / m_P^{\Gamma+1}$). Let $W_0 = G_\Gamma$ R and $W_1 = J^{\Gamma}(D(H(W_{i-1} \cap Gr^1R)))$ and set $W(D, E, P) = \bigcap W_i$. P is of the type zero iff $W(D, E, P) \neq 0$. The W-directrix $Dir_W(D,E,P)$ is the subvariety of T_PX given by W(D,E,P). A weakly permissible curve Y is permissible iff $v_Y(D(I(Y))) \geq \rho$, $v_Y(D(I(P))) \geq \rho-1$, where $P = \min (r+1, v_P(D(I(Y)))$. The main results of [7] are the following ones.
- <u>Proposition 1.</u> If Y is permissible, tangent to the W-directrix, $\pi: X' \rightarrow X$ is the blowing-up centered at Y and $\nu(D', E', P') = \nu(D, E, \pi(P'))$, then $P' \in \text{Proj}(\text{Dir}_{W}(D, E, P) / T_{\pi(P')}Y)$ and $\dim \text{Dir}_{W}(D', E', P') \leq \dim \text{Dir}(D, E, \pi(P')).$ ([7]. (2.4)).
- Theorem 3. ([7] 3.1). Assume that r = biggest adapted order, $r \geq 2$, dim X = 3 and if $\nu(D,E,P) = r$ then P is of the type zero. Then there is a finite sequence of permissible blowing-ups such that the strict transform (X, \tilde{P}, P) verifies $\nu(D, \tilde{E}, P) < r$ for each P.
- 4. Final forms. One has also the analogous of $\mu/\lambda \notin \mathbb{Q}_+$ for dim X = 3. Assume that $\nu(D, E, P) = 0$, P is regular iff $\nu(D, \emptyset, P) = 0$, P is a simple point iff it is not regular, 1 = e(E , P) = # (components of E) and the characteristic polynomial of the linear part of a generator of D_P has roots (1, λ , μ) where $\lambda \notin \mathbb{Q}_+$, $\mu \notin \mathbb{Q}_+$. P is a simple corner iff it is not regular, e(E,P) > 2 and one can take a generator D of D_P and

Y = E₁ \cap E₂ (E_i = irr. comp. of E) veriying that the linear map $f \mapsto c1^{1}(D(f))$ in In $^{1}(I(Y))$ has roots 1, λ , $\lambda \notin \mathbb{Q}_{+}$ for its characteristic polynomial. The main results of [9] are the following ones

Theorem 4. ([9]. 4.10). Let dim X=3 and assume that $\nu(D,E,P)=0$ for each P. Then after a finite number of blowing-ups, the strict transform $(X^{\sim}, E^{\sim}, D^{\sim})$ verifies that each closed point is a regular point, a simple point or a simple corner.

Corollary. ([9]. 7.5, also [5], [8]). Let $\pi\colon X^{\sim} \to X$ be the above morphism. Then there is a bijection Ψ between the integral branches of D through a singular point P of D not contained in E and the simple points P^{\sim} over P, such that $\Psi(\Gamma)$ = infinitely near point of Γ over E^{\sim} .

REFERENCES

- [1] BENDIXON. "Sur les points singulières d'une équation différentielle linéaire". Ofv. Kongl. Ventenskaps. Akademiens Forhand linger 148 (1895). 81–89.
- [2] CAMACHO-SAD. "Invariant varieties through singularities fo holomorphic vector fields". Ann. of. Math. 115. (1982). 579-595.
- [3] CAMACHO-LINS NETO-SAD. "Topological invariants and equidesingularization for holomorphic vector fields". J. Diff. Geom. 20 (1984). 143-174.
- [4] CANO. "Teoría de distribuciones sobre variedades algebraicas".
 Mon. y Mem. I.J.J. XXVIII. C.S.I.C. Madrid (1983).
- [5] —— "Transformaciones cuadrática y clasificación de las curvas integrales de un campo de vectores". Publ. Secc. Mat. Univ. Valladolid. 6. 1–24. (1983).
- [6] ---- "Games of desingularization for a three-dimensional vector fields". Preprint Uiv. Valladolid. (1985). 185 pp.
- [7] —— "Local and global results on the desingularization of threedimensional vector fields". Preprint Univ. Valladolid (1985). 45 pp.
- [8] —— "Ramas integrales de ciertos campos de vectores". Comunicación Congreso AMEL. Coimbra. Set. 1985. 4pp.
- [9] —— "Final forms for a three dimensional vector field under blowing-ups" Preprint Univ. Valladolid. (1985). 30 pp.
- [10] CERVEAU-MATTEI. "Formes holomorphes integrables singulières". Asterisque 97. (1982).
- [11] SEIDENBERG. "Réduction of the singularities of Ady = Bdx". Am. J. Math. 1968, p. 248-269.
- (*) A.M.S. Subject Classification (1980): 14-B-05, 32-C-40, 32-C-45 58-A-30, 58-F-14, 58-F-18.