INTERPOLATION WITH FUNCTION PARAMETER AND UMD SPACES

Fernando Cobos

División de Matemáticas. Facultad de Ciencias. Universidad Autónoma. 28049 Madrid. España.

A (real or complex) Banach space E is said to have the unconditionality property for martingale differences (UMD-property, for short) if E-values martingale differences are unconditional in $L_p(E;[0,1])$ [see [2], [3] and the references given there]. The main reason for the interest in this new class of spaces is that the analogues of several classical results on martingales and singular integrals are also true for a Banach space belonging to this class.

There are only a few known examples of concrete spaces with the UMD-property. For instance $\, {\rm I\!R} \,, \,$ the Lebesgue spaces $\, {\rm l\!I}_{p} \,, \,$ L $_{p} \,$ Where $\, {\rm l\!I} \, < \, {\rm p\!I} \, < \, \infty \,$ and $\, {\rm T\!I} \,$ is the unit circle, and the Schatten classes $\, {\rm S\!I}_{p} \, ({\rm H\!I},{\rm K\!I}) \,$ are all UMD spaces. On the contrary, the spaces $\, {\rm l\!I}_{1} \,$ and $\, {\rm l\!I}_{\infty} \,$ fail to have the UMD-property because they are not reflexive.

In this note we are interested in studying whether or not the spaces ocurring in classical harmonic analysis have the UMD-property. We also show some operator spaces with that property.

Let us start by recalling the definition of the (ϕ,q) -method of interpolation (see [6] and the references given there)

Let Θ be the class of all functions $\phi:(0,+\infty)\to(0,+\infty)$ continuous, with $\phi(1)=1$ and such that

 $\overline{\varphi}(t) = \sup\{\varphi(ts)/\varphi(s): s>0\} < \infty \quad \text{for every} \quad t>0\,.$ The Boyd indices of the sub-multiplicative function $\overline{\varphi}$ are represented by $\alpha_{\overline{\varphi}}$ and $\beta_{\overline{\varphi}}$.

Let (A_0,A_1) be a compatible couple of Banach spaces, let $1 \le q \le \infty$ and φ e Θ with $0 < \beta_{\overline{\varphi}} \le \alpha_{\overline{\varphi}} < 1$. The space $(A_0,A_1)_{\varphi,q}$ consists of all $x \in A_0+A_1$ which have a finite norm

$$\left\| \mathbf{x} \right\|_{\phi, \mathbf{q}} = \left(\int_{0}^{\infty} (\phi(t)^{-1} \kappa(t, \mathbf{x}))^{\mathbf{q}} dt / t \right)^{1/\mathbf{q}}$$

where K(t,x) is the functional of J. Peetre.

Concerning the UMD-property, this interpolation method is stable if $\ 1 \ < \ q \ < \ \infty \colon$

Theorem 1. Let (A_0,A_1) be a couple of UMD spaces, let $1 < q < \infty$ and $\varphi \in \Theta$ with $0 < \beta_{\overline{\varphi}} \le \alpha_{\overline{\varphi}} < 1$. Then $(A_0,A_1)_{\varphi,q}$ is a UMD-space.

The proof is based on the formula

$$(L_q(A_0), L_q(A_1))_{\phi,q} = L_q((A_0, A_1)_{\phi,q})$$

and the characterization of UMD spaces in terms of the vector-values Hilbert transform.

As a consequence we obtain that the Lorentz-Zygmund spaces $L_{p,q}(\log L)^{\gamma}$ and the Zygmund spaces $L_{p}(\log L)^{\gamma}$ (see [1]) are UMD spaces provided that 1 \infty, 1 < q < ∞ and $-\infty$ < γ < $+\infty$.

On the other hand, if $1 \le p < \infty$ and $\gamma > 0$, then $L(\log L)^{\gamma}$, the O'Neil space $K^p(\log^+ K)^{\gamma}$, and the Zygmund space Z^{γ} (see $\begin{bmatrix} 7 \end{bmatrix}$, $\begin{bmatrix} 1 \end{bmatrix}$) fail to have the UMD-property because they are not reflexive.

Theorem 1 also allows to get some new information on the Lorentz-Marcinkiewicz operator spaces $S_{\varphi\,,\,q}(H,K)$ [4]: For $0<\beta_{\overline{\varphi}} \le \alpha_{\overline{\varphi}} < 1$, the spaces $S_{\varphi\,,\,q}(H,K)$ have the UMD-property if $1< q<\infty$, while $S_{\varphi\,,\,1}(H,K)$ and $S_{\varphi\,,\,\infty}(H,K)$ fail to have that.

The second part of this statement follows from the fact that the $(\varphi,1)$ and $(\varphi,\infty)-methods$ are not stable for the UMD-property.

Full details and proofs [5] will appear elsewhere.

REFERENCES

- 1. C. BENNETT and K. RUDNICK, Dissertationes Math. 175 (1980)
- 2. J. BOURGAIN, Ark. Mat. 22 (1983) 163-168.
- 3. D.L. BURKHOLDER, Proc. Conf. Harmonic Analysis in Honour of A. Zygmund, Wadsworth, 1983.
- F. COBOS, On the Lorentz-Marcinkiewicz operator ideal, Math. Nachr. (to appear)
- 5. F. COBOS, Some spaces in which martingale difference sequences are unconditional (preprint).

- 6. C. MERUCCI, Comptes rendus 295, série I (1982) 427-430.
- 7. A. ZYGMUND, Trigonometric Series, Vol. I, II, Cambridge, 1977.